Calculation of Residual Life for P91 Material Based on Creep Rate and Time to Rupture

Calculation of Residual Life for P91 Material Based on Creep Rate and Time to Rupture

Przemysław OSOCHA

download PDF

Abstract. The presented paper shows methods of residual life prediction based on creep test data. Real test data for P91 material will be used. Different methods will be shown. Calculations are based on the steady creep rate connection with the time to rupture.

Creep Rupture, Creep Test, Monkman-Grant, Residual Life

Published online 7/16/2018, 6 pages
Copyright © 2018 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Przemysław OSOCHA, ‘Calculation of Residual Life for P91 Material Based on Creep Rate and Time to Rupture’, Materials Research Proceedings, Vol. 5, pp 177-182, 2018


The article was published as article 31 of the book Terotechnology

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] A. Jakowluk, Procesy pełzania i zmęczenia w materiałach, WNT, Warszawa, 1993.
[2] ODIN Materials Database (Mat-DB). In: Online Data & Information Network for Energy. European Communities. Available via European. Commission Joint Research Centre (JRC).
[3] D. C. Dunand, B. Q. Han, A. M. Jansen, Monkman-grant analysis of creep fracture in dispersion-strengthened and particulate-reinforced aluminum. Metallurgical and Materials Transactions A, 30(3), (1999) 829-838.
[4] W.G. Kim, S.H. Kim, W.S. Ryu, Evaluation of Monkman-Grant parameters for type 316LN and modified 9Cr-Mo stainless steels, KSME international journal 16.11 (2002) 1420-1427.
[5] P.J. Ennis, A. Czyrska-Filemonowicz, Recent advances in creep resistant steels for power plant applications, OMMI, Vol 1, No.1, April 2002.
[6] E. Skrzypczak-Pietraszek, J. Pietraszek, Phenolic acids in in vitro cultures of Exacum affine Balf. f., Acta Biol Cracov Bot 51 (2009) 62-62.
[7] A.J. Izenman, Modern Multivariate Statistical Techniques. Regression, Classification and Manifold Learning. Springer, New York, 2008.
[8] E. Skrzypczak-Pietraszek, I. Kwiecien, A. Goldyn, J. Pietraszek, HPLC-DAD analysis of arbutin produced from hydroquinone in a biotransformation process in Origanum majorana L. shoot culture, Phytochem. Lett. 20 (2017) 443-448.
[9] J. Pietraszek, Fuzzy Regression Compared to Classical Experimental Design in the Case of Flywheel Assembly, Lect. Notes Artif. Int. 7267 (2012) 310-317.
[10] J. Pietraszek, The Modified Sequential-Binary Approach for Fuzzy Operations on Correlated Assessments, Lect. Notes Artif. Int. 7894 (2013) 353-364.
[11] J. Pietraszek, M. Kolomycki, A. Szczotok, R. Dwornicka, The Fuzzy Approach to Assessment of ANOVA Results, Lect. Notes Artif. Int. 9875 (2016) 260-268.
[10] J. Korzekwa, A. Gadek-Moszczak, M. Bara, The Influence of Sample Preparation on SEM Measurements of Anodic Oxide Layers, Prakt. Metallogr.-Pr. M. 53 (2016) (1) 36-49.
[11] A. Szczotok, B. Chmiela, Effect of Heat Treatment on Chemical Segregation in CMSX-4 Nickel-Base Superalloy, J. Mater. Eng. Perform. 23 (2014) (8) 2739-2747.
[12] A. Szczotok, Metallographic Study of the Casting Made from CMSX-6 Sc Nickel-Based Superalloy, Arch. Metall. Mater. 62 (2017) (2) 581-586.
[13] A. Gadek-Moszczak, History of Stereology, Image Anal. Stereol. 36 (2017) (3) 151-152.
[14] A. Gadek-Moszczak, P. Matusiewicz, Polish Stereology – a Historical Review, Image Anal Stereol 36 (2017) (3) 207-221.