Role of Surfactants in Enhancing the Biosorption Capacity of Chitosan


Role of Surfactants in Enhancing the Biosorption Capacity of Chitosan

Preeti Pal, Anjali Pal

This chapter highlights the properties and applications of chitosan and its derivatives for removal of heavy metals and dyes from aqueous solutions. It also explains the role of anionic surfactant (AS), sodium dodecyl sulfate (SDS) for enhancing the removal capacity of the chitosan. Different types of modifications can be done over the chitosan beads among which SDS modification is one of the best ways to modify the chitosan beads surface to obtain the maximum removal of heavy metals and dyes from the aqueous solutions. While SDS above its CMC is applied to the chitosan beads for the surface modification it is expected to form a bilayer over the surface and make it feasible to capture the contaminants preferably cations and cationic dyes, as the surface is negatively charged. This chapter compiles some of the recently published studies which show the application of SDS for making the aqueous solution free of contaminants.

Marine Waste, Chitin and Chitosan, Anionic Surfactant, Sodium Dodecyl Sulfate, Heavy Metal, Dye, Adsorption

Published online 7/1/2018, 24 pages


Part of the book on Chitosan-Based Adsorbents for Wastewater Treatment

[1] Information on
[2] I. Munoz, C. Rodriguez, D. Gillet, B. M. Moerschbacher, Life cycle assessment of chitosan production in India and Europe, Int. J. Life Cycle Assess. (2017) 1–10.
[3] N. Yan, X. Chen, Don’t waste seafood waste, Nature. 524 (2015) 155–157.
[4] X. Li, H. Zhou, W. Wu, S. Wei, Y. Xu, Y. Kuang, Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites, J. Colloid Interface Sci. 448 (2015) 389–397.
[5] M. Li, Z. Zhang, R. Li, J.J. Wang, A. Ali, Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan, Int. J. Biol. Macromol. 86 (2016) 876–884.
[6] H.K. No, S.P. Meyers, Application of chitosan for treatment of wastewaters, Rev. Environ. Contam. Toxicol. 163 (2000) 1–28.
[7] D. Chauhan, M. Jaiswal, N. Sankararamakrishnan, Removal of cadmium and hexavalent chromium from electroplating waste water using thiocarbamoyl chitosan, Carbohydr. Polym. 88 (2012) 670–675.
[8] P. Pal, A. Pal, Surfactant-modified chitosan beads for cadmium ion adsorption, Int. J. Biol. Macromol. 104 (2017) 1548–1555.
[9] E. Igberase, P. Osifo, Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution, J. Ind. Eng. Chem. 26 (2015) 340–347.
[10] S.M. Nomanbhay, K. Palanisamy, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal, Electron. J. Biotechnol. 8 (2005) 43–53.
[11] P.O. Osifo, The use of chitosan beads for the adsorption and regeneration of heavy metals, North-West University, 2007.
[12] W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydr. Polym. 83 (2011) 1446–1456.
[13] G. Crini, P.M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature, Prog. Polym. Sci. 33 (2008) 399–447.
[14] K. Azlan, W.N. Wan Saime, L. Lai Ken, Chitosan and chemically modified chitosan beads for acid dyes sorption, J. Environ. Sci. 21 (2009) 296–302.
[15] D. Das, A. Pal, Adsolubilization phenomenon perceived in chitosan beads leading to a fast and enhanced malachite green removal, Chem. Eng. J. 290 (2016) 371–380.
[16] A. Pal, S. Pan, S. Saha, Synergistically improved adsorption of anionic surfactant and crystal violet on chitosan hydrogel beads, Chem. Eng. J. 217 (2013) 426–434.
[17] A.L.Ã. Ahmad, S. Sumathi, B.H. Hameed, Adsorption of residue oil from palm oil mill effluent using powder and flake chitosan: Equilibrium and kinetic studies, Water Res. 39 (2005) 2483–2494.
[18] P.F. Rupani, P.S. Rajeev, M.H. Irahim, N. Esa, Review of current palm oil mill effluent (POME) treatment methods: Vermicomposting as a sustainable practice, World Appl. Sci. J. 11 (2010) 70–81.
[19] A.R. Gentili, M.A. Cubitto, M. Ferrero, M.S. Rodriguéz, Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes, Int. Biodeterior. Biodegradation. 57 (2006) 222–228.
[20] S. Moradi Dehaghi, B. Rahmanifar, A.M. Moradi, P.A. Azar, Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent, J. Saudi Chem. Soc. 18 (2014) 348–355.
[21] B. Rahmanifar, S. Moradi Dehaghi, Removal of organochlorine pesticides by chitosan loaded with silver oxide nanoparticles from water, Clean Technol. Environ. Policy. 16 (2013) 1781–1786.
[22] M. Agostini de Moraes, D.S. Cocenza, F. da Cruz Vasconcellos, L.F. Fraceto, M.M. Beppu, Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides, J. Environ. Manage. 131 (2013) 222–227.
[23] R.T.A. Carneiro, T.B. Taketa, R.J. Gomes Neto, J.L. Oliveira, E.V.R. Campos, M.A. de Moraes, C.M.G. da Silva, M.M. Beppu, L.F. Fraceto, Removal of glyphosate herbicide from water using biopolymer membranes, J. Environ. Manage. 151 (2015) 353–360.
[24] A. Rathinam, B. Maharshi, S.K. Janardhanan, R.R. Jonnalagadda, B.U. Nair, Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study, Bioresour. Technol. 101 (2010) 1466–1470.
[25] A.G. Hadi, Synthesis of chitosan and its use in metal removal, Chem. Mater. Res. 3 (2013) 22–26.
[26] J. Bristow, U.S. Patent 8,318,913 (2012).
[27] P.K. Dutta, M.N. V. Ravikumar, J. Dutta, Chitin and chitosan for versatile applications, J. Macromol. Sci. Part C Polym. Rev. 42 (2002) 307–354.
[28] C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Prog. Polym. Sci. 34 (2009) 641–678.
[29] S.E.A. Sharaf El-Deen, F.S. Zhang, Immobilisation of TiO2-nanoparticles on sewage sludge and their adsorption for cadmium removal from aqueous solutions, J. Exp. Nanosci. 11 (2016) 239–258.
[30] A.K.A. Rathi, S.A. Puranik, Chemical industry wastewater treatment using adsorption, Ind. Res. 61 (2002) 53–60.
[31] N. Sankararamakrishnan, A.K. Sharma, R. Sanghi, Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater, J. Hazard. Mater. 148 (2007) 353–359.
[32] M.Y. Abdelaal, T.R. Sobahi, H.F. Al-Shareef, Modification of chitosan derivatives of environmental and biological interest: A green chemistry approach, Int. J. Biol. Macromol. 55 (2013) 231–239.
[33] P.O. Boamah, Y. Huang, M. Hua, Q. Zhang, Y. Liu, J. Onumah, W. Wang, Y. Song, Removal of cadmium from aqueous solution using low molecular weight chitosan derivative., Carbohydr. Polym. 122 (2015) 255–264.
[34] A. Chen, G. Zeng, G. Chen, X. Hu, M. Yan, S. Guan, C. Shang, L. Lu, Z. Zou, G. Xie, Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol, Chem. Eng. J. 191 (2012) 85–94.
[35] A. Chen, C. Shang, J. Shao, Y. Lin, S. Luo, J. Zhang, H. Huang, M. Lei, Q. Zeng, Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III): A novel adsorbent for simultaneous removal of tetracycline and cadmium, Carbohydr. Polym. 155 (2017) 19–27.
[36] G.Z. Kyzas, P.I. Siafaka, D.A. Lambropoulou, N.K. Lazaridis, D.N. Bikiaris, Poly (itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd(II) uptake, Langmuir. 30 (2014) 120–131.
[37] R.J. Kongarapu, P. Mahamallik, A. Pal, Surfactant modification of chitosan hydrogel beads for Ni@NiO core-shell nanoparticles formation and its catalysis to 4-nitrophenol reduction, J. Environ. Chem. Eng. 5 (2017) 1321–1329.
[38] P. Pal, A. Pal, Enhanced Pb2+ removal by anionic surfactant bilayer anchored on chitosan bead surface, J. Mol. Liq. 248 (2017) 713–724.
[39] S. Pandey, S. Tiwari, Facile approach to synthesize chitosan based composite-characterization and cadmium(II) ion adsorption studies, Carbohydr. Polym. 134 (2015) 646–656.
[40] H. Lü, H. An, Z. Xie, Ion-imprinted carboxymethyl chitosan-silica hybrid sorbent for extraction of cadmium from water samples, Int. J. Biol. Macromol. 56 (2013) 89–93.
[41] E. Padilla-Ortega, M. Darder, P. Aranda, R. Figueredo Gouveia, R. Leyva-Ramos, E. Ruiz-Hitzky, Ultrasound assisted preparation of chitosan-vermiculite bionanocomposite foams for cadmium uptake, Appl. Clay Sci. 130 (2016) 40–49.
[42] A. Heidari, H. Younesi, Z. Mehraban, H. Heikkinen, Selective adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution using chitosan-MAA nanoparticles, Int. J. Bol. Macromol. 61 (2013) 251–263.
[43] G.G. Ying, Fate, behavior and effects of surfactants and their degradation products in the environment, Environ. Int. 32 (2006) 417–431.
[44] T. Ivanković, J. Hrenović, Surfactants in the environment, Arh. Hig. Rada Toksikol. 61 (2010) 95–110.
[45] Information on
[46] E. Guzmán, S. Llamas, A. Maestro, L. Fernández-Peña, A. Akanno, R. Miller, F. Ortega, R.G. Rubio, Polymer-surfactant systems in bulk and at fluid interfaces, Adv. Colloid Interface Sci. 233 (2016) 38–64.
[47] K. Xu, G. Zeng, J. Huang, J. Wu, Y. Fang, G. Huang, J. Li, B. Xi, H. Liu, Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane, Colloids Surfaces A Physicochem. Eng. Asp. 294 (2007) 140–146.
[48] R.S. Juang, Y.Y. Xu, C.L. Chen, Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration, J. Memb. Sci. 218 (2003) 257–267.
[49] V.D. Karate, K.V. Marathe, Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration, J. Hazard. Mater. 157 (2008) 464–471.
[50] J.H. Huang, G.M. Zeng, C.F. Zhou, X. Li, L.J. Shi, S.B. He, Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration, J. Hazard. Mater. 183 (2010) 287–293.
[51] L. Chiappisi, M. Gradzielski, Co-assembly in chitosan-surfactant mixtures: Thermodynamics, structures, interfacial properties and applications, Adv. Colloid Interface Sci. 220 (2015) 92–107.
[52] T. Nylander, Y. Samoshina, B. Lindman, Formation of polyelectrolyte-surfactant complexes on surfaces, Adv. Colloid Interface Sci. 123–126 (2006) 105–123.
[53] C.D. Bain, P.M. Claesson, D. Langevin, R. Meszaros, T. Nylander, C. Stubenrauch, S. Titmuss, R. von Klitzing, Complexes of surfactants with oppositely charged polymers at surfaces and in bulk, Adv. Colloid Interface Sci. 155 (2010) 32–49.
[54] D. Langevin, Complexation of oppositely charged polyelectrolytes and surfactants in aqueous solutions. A review, Adv. Colloid Interface Sci. 147–148 (2009) 170–177.
[55] L. Chiappisi, I. Hoffmann, M. Gradzielski, Complexes of oppositely charged polyelectrolytes and surfactants-recent developments in the field of biologically derived polyelectrolytes, Soft Matter. 9 (2013) 3896-3909.
[56] Y.C. Wei, S.M. Hudson, Binding of sodium dodecyl sulfate to a polyelectrolyte based on chitosan, Macromolecules. 26 (1993) 4151–4154.
[57] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaieli, G. Nazari, B. Rasem, Experimental study on the adsorptive behavior of congo red in cationic surfactant-modified tea waste, Process Saf. Environ. Prot. 95 (2015) 226–236.
[58] L.D.L. Miranda, C.R. Bellato, M.P.F. Fontes, M.F. de Almeida, J.L. Milagres, L.A. Minim, Preparation and evaluation of hydrotalcite-iron oxide magnetic organocomposite intercalated with surfactants for cationic methylene blue dye removal, Chem. Eng. J. 254 (2014) 88–97.
[59] P. Janoš, V. Šmídová, Effects of surfactants on the adsorptive removal of basic dyes from water using an organomineral sorbent—iron humate, J. Colloid Interface Sci. 291 (2005) 19–27.
[60] A. Adak, M. Bandyopadhyay, A. Pal, Adsorption of anionic surfactant on alumina and reuse of the surfactant-modified alumina for the removal of crystal violet from aquatic environment., J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 40 (2005) 167–182.
[61] A. Adak, A. Pal, M. Bandyopadhyay, Removal of phenol from water environment by surfactant-modified alumina through adsolubilization, Colloids Surfaces A Physicochem. Eng. Asp. 277 (2006) 63–68.
[62] T.D. Pham, M. Kobayashi, Y. Adachi, Adsorption of anionic surfactant sodium dodecyl sulfate onto alpha alumina with small surface area, Colloid Polym. Sci. 293 (2014) 217–227.
[63] M.U. Khobragade, A. Pal, Investigation on the adsorption of Mn(II) on surfactant-modified alumina: Batch and column studies, J. Environ. Chem. Eng. 2 (2014) 2295–2305.
[64] M.U. Khobragade, A. Pal, Adsorptive removal of Cu(II) and Ni(II) from single-metal, binary-metal, and industrial wastewater systems by surfactant-modified alumina, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 50 (2015) 385-395.
[65] E.P. Azadeh, H. Seyed F, A. Yousefi, Surfactant-modified wheat straw: preparation, characterization and its application for methylene blue adsorption from aqueous solution, Chem. Eng. Process Technol. 6 (2015) 1–9.
[66] T.D. Pham, H.H. Nguyen, N.V. Nguyen, T.T. Vu, T.N.M. Pham, T.H.Y. Doan, M.H. Nguyen, T.M.V. Ngo, Adsorptive removal of copper by using surfactant modified laterite soil, J. Chem. 2017 (2017) 1-10.
[67] T. Mitani, N. Fukumuro, C. Yoshimoto, H. Ishii, Effects of counter ions (SO42– and Cl–) on the adsorption of copper and nickel ions by swollen chitosan beads, Agric. Biol. Chem. 55 (1991) 2419.
[68] A. Adak, A. Pal, M. Bandyopadhyay, Spectrophotometric determination of anionic surfactants in wastewater using acridine orange, Indian J. Chem. Technol. 12 (2005) 145–148.
[69] C. Lin, S. Wang, H. Sun, R. Jiang, Adsorption of anionic dye by anionic surfactant modified chitosan beads: Influence of hydrophobic tail and ionic head-group, J. Dispers. Sci. Technol. 39 (2017) 1–10.
[70] G. Asgari, B. Roshani, G. Ghanizadeh, The investigation of kinetic and isotherm of fluoride adsorption onto functionalize pumice stone, J. Hazard. Mater. 217–218 (2012) 123–132.
[71] S. An, X. Liu, L. Yang, L. Zhang, Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: Study in single- and binary-solute systems, Chem. Eng. Res. Des. 94 (2015) 726–735.
[72] S. Chatterjee, D.S. Lee, M.W. Lee, S.H. Woo, Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide, Bioresour. Technol. 100 (2009) 2803–2809.
[73] M. Seredych, C. Portet, Y. Gogotsi, T.J. Bandosz, Nitrogen modified carbide-derived carbons as adsorbents of hydrogen sulfide, J. Colloid Interface Sci. 330 (2009) 60–66.
[74] S. Chatterjee, T. Chatterjee, S. Lim, S.H. Woo, Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation, Environ. Technol. 32 (2011) 1503–1514.