Applications Chitin and Chitosan-Based Adsorbents for the Removal of Natural Dyes from Wastewater

$20.00

Applications Chitin and Chitosan-Based Adsorbents for the Removal of Natural Dyes from Wastewater

Sapna Raghav1, Ritu Painuli, Dinesh Kumar

Adsorption is one of the most advantageous techniques for the removal of pollutants. It is fast, simple, cheap with many opportunities to modify the initial materials after appropriate synthesis routes, etc. Numerous adsorbent materials have been prepared in the last years, having as ultimate scope to remove some pollutants especially from contaminated waters (effluents originated from industries). But the composition of each type of effluents is varying. Dyes are some major components of industrial wastewaters. Chitosan and its derivative have received considerable attention in wastewater treatment for dye removal. This chapter highlights the dye removal affinity of Chitosan and its cross-linked and grafted derivatives.

Keywords
Chitosan, Adsorption, Dyes, Cross-linking, Grafting, Isotherms

Published online 7/1/2018, 24 pages

DOI: http://dx.doi.org/10.21741/9781945291753-5

Part of the book on Chitosan-Based Adsorbents for Wastewater Treatment

References
[1] V. Gupta, Application of low-cost adsorbents for dye removal—A review. J. Environ. Manage. 90 (2009) 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017
[2] O. Ceyhan, D. Baybas, Adsorption of some textile dyes by hexadecyl trimethylammonium bentonite. Turkish J. Chem. 25 (2001) 193–200.
[3] A. L. Prasad, T. Santhi, Adsorption of hazardous cationic dyes from aqueous solution onto Acacia nilotica leaves as an ecofriendly adsorbent. Sustain. Environ. Res. 22 (2012) 113–122.
[4] G. Mezohegyi, F. P. van der Zee, J. Font, A. Fortuny, A. Fabregat, Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manage. 102 (2012) 148–164. https://doi.org/10.1016/j.jenvman.2012.02.021
[5] N. Ali, A. Hameed, S. Ahmed, Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. J. Hazard. Mater. 164 (2009) 322–328. https://doi.org/10.1016/j.jhazmat.2008.08.006
[6] G. Crini, Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 97 (2006) 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001
[7] S. P. Buthelezi, A.O. Olaniran, B. Pillay, Textile dye removal from waste-water effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17 (2012) 14260–14274. https://doi.org/10.3390/molecules171214260
[8] E. Alver, A. U. Metin, Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chem. Eng. J. 200–202 (2012) 59–67. https://doi.org/10.1016/j.cej.2012.06.038
[9] Y. Xing, X. Chen, D. Wang, Electrically regenerated ion exchange for removal and recovery of Cr(VI) from wastewater. Environ. Sci. Technol. 41(2007) 1439–1443. https://doi.org/10.1021/es061499l
[10] M. Chafi, B. Gourich, A. H. Essadki, C. Vial, A. Fabregat, A. Comparison of electrocoagulation using iron and aluminum electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281 (2011) 285–292. https://doi.org/10.1016/j.desal.2011.08.004
[11] T. A. Kurniawan, G. Chan, W. H. Lo, S. Babel, Physicochemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118 (2006) 83–98. https://doi.org/10.1016/j.cej.2006.01.015
[12] M. García-Gabaldón, V. Pérez-Herranz, J. García-Antón, J. Guinon, Electro-chemical recovery of tin from the activating solutions of the electroless plating of polymers: Galvanostatic operation. Separ. Purif. Technol. 51 (2006) 143–149. https://doi.org/10.1016/j.seppur.2005.12.028
[13] N. A. Mohamed, M. M. Fahmy, Synthesis and antimicrobial activity of some novel cross-linked chitosan hydrogels. Int. J. Mol. Sci. 13 (2012) 11194–11209. https://doi.org/10.3390/ijms130911194
[14] R. Menaka, S. Subhashin, Chitosan Schiff base as effective corrosion inhibitor for mild steel in acid medium. Polym. Int. 66 (2017) 349-358. https://doi.org/10.1002/pi.5245
[15] L. Racine, I. Texier, R. Auzély-Velty, Chitosan-based hydrogels: recent design concepts to tailor properties and functions. Polym. Int. 66 (2017) 981-998. https://doi.org/10.1002/pi.5331
[16] D. B. Lee, D. W. Kim, Y. Shchipunov C. S. Ha, Effects of graphene oxide on the formation, structure and properties of bionanocomposite films made from wheat gluten with chitosan. Polym. Int. 65 (2016) 1039-1045. https://doi.org/10.1002/pi.5148
[17] C. Valencia-Sullca, M. Jiménez, A. Jiménez, L. Atarés, M. Vargas, A. Chiralt, Influence of liposome encapsulated essential oils on properties of chitosan films. Polym. Int. 65 (2016) 979-987. https://doi.org/10.1002/pi.5143
[18] I. Safir, M. Chami, T. Buergi, C. Nardin, Investigation of the thin film crystallization of a DNA copolymer hybrid composed of chitosan. Polym. Int. 65 (2016) 1165-1171. https://doi.org/10.1002/pi.5165
[19] G. Valladares, P. González Audino, M. C. Strumia, Preparation evaluation of alginate/chitosan microspheres containing pheromones for pest control of Megaplatypus mutatus Chapuis (Platypodinae: Platypodidae). Polym. Int. 65 (2016) 216-223. https://doi.org/10.1002/pi.5049
[20] M. P. Di Bello, L. Mergola, S. Scorrano, R. Del Sole, Towards a new strategy of a chitosan‐based molecularly imprinted membrane for removal of 4‐nitrophenol in real water samples. Polym. Int. 66 (2017) 1055-1063. https://doi.org/10.1002/pi.5360
[21] T. D. A. Senra, J. Desbrières, Using full‐factorial design analysis and response surface methodology to better understand the production of cationized chitosan from epoxides. Polym. Int. 65 (2016) 811-819. https://doi.org/10.1002/pi.5137
[22] A. Abdulkarim, M. T. Isa, S. Abdulsalam, A. J. Muhammad, A. O. Ameh, Extraction and characterization of chitin and chitosan from mussel shell. Civil Environ. Res. 3 (2013) 108–114.
[23] J. S. Piccin, M. L. G.Vieira, J. O. Gonc¸ alves, G. L. Dotto, L. A. A. Pinto, Adsorption of FD&C Red No. 40 by chitosan: Isotherms analysis. J. Food Eng. 95 (2009) 16–20. https://doi.org/10.1016/j.jfoodeng.2009.03.017
[24] S. Jana, A. Saha, A. K. Nayak, K. K. Sen, S. K. Basu, Aceclofenac loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloid. Surfaces B: Biointerfaces 105 (2013) 303–309. https://doi.org/10.1016/j.colsurfb.2013.01.013
[25] Y. Ren, H. A. Abbood, F. He, H. Peng, K. Huang, Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 226 (2013) 300–311. https://doi.org/10.1016/j.cej.2013.04.059
[26] Y. Peng, D. Chen, J. Ji, Y. Kong, H. Wan, C. Yao, Chitosan-modified paly gorskite Preparation, characterization and reactive dye removal. Appl. Clay Sci. 74 (2013) 81–86. https://doi.org/10.1016/j.clay.2012.10.002
[27] G. Thompson, J. Swain, M. Kay, C. F. Forster, The treatment of pulp and paper mill effluent: a review. Bioresour. Technol. 77 (2001) 275-286. https://doi.org/10.1016/S0960-8524(00)00060-2
[28] M. I. El-Khaiary, Least-squares regression of adsorption equilibrium data: Comparing the options. J. Hazard. Mater. 158 (2008) 73-87. https://doi.org/10.1016/j.jhazmat.2008.01.052
[29] E. Bulut, M. Özacar, I. A. Şengil, Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Micropor. Mesopor. Mater. 115 (2008) 234-246. https://doi.org/10.1016/j.micromeso.2008.01.039
[30] G. L. Dotto, L. A. A. Pinto, Adsorption of food dyes onto chitosan: Optimization process and kinetic. Carbohy. Polym. 84 (2011) 231–238. https://doi.org/10.1016/j.carbpol.2010.11.028
[31] E. Guibal, E. Touraud, J. Roussy, Chitosan interactions with metal ions and dyes: dissolved-state vs. solid-state application. World J. Microbiol. Biotechnol. 21 (2005) 913–920. https://doi.org/10.1007/s11274-004-6559-5
[32] N. Sakkayawong, P. Thiravetyan, W. Nakbanpote, Adsorption mechanism of synthetic reactive dye wastewater by chitosan. J. Colloid. Interf. Sci. 286 (2005) 36–42. https://doi.org/10.1016/j.jcis.2005.01.020
[33] E. Guibal, P. McCarrick, J. M. Tobin, Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Sep. Sci. Technol. 38 (2013) 3049–3073. https://doi.org/10.1081/SS-120022586
[34] W. Cheung, Y. Szeto, G. McKay, Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresour. Technol. 98 (2007) 2897–2904. https://doi.org/10.1016/j.biortech.2006.09.045
[35] F. C. Wu, R. L. Tseng, R. S. Juang, Comparative adsorption of metal and dye on flake-and bead-types of chitosans prepared from fishery wastes. J. Hazard. Mater. 73 (2000) 63–75. https://doi.org/10.1016/S0304-3894(99)00168-5
[36] F. C. Wu, R. L. Tseng, R. S. Juang, Enhanced abilities of highly swollen chitosan beads for color removal and tyrosinase immobilization. J. Hazard. Mater. 81 (2000) 167–177. https://doi.org/10.1016/S0304-3894(00)00340-X
[37] U. Filipkowska, Adsorption and desorption of reactive dyes onto chitin and chitosan flakes and beads. Adsorpt. Sci. Technol. 24 (2006) 781–795. https://doi.org/10.1260/026361706781388932
[38] J. Barron Zambrano, A. Szygula, M. Ruiz, A. M. Sastre, E. Guibal, Biosorption of reactive black 5 from aqueous solutions by chitosan: Column studies. J. Environ. Manag. 91 (2010) 2669–2675. https://doi.org/10.1016/j.jenvman.2010.07.033
[39] G. Z. Kyzas, N. K. Lazaridis, Reactive and basic dyes removal by sorption onto chitosan derivatives. J. Colloid. Interf. Sci. 331 (2006) 32–39. https://doi.org/10.1016/j.jcis.2008.11.003
[40] T. K. Saha, N. C. Bhoumik, S. Karmaker, M. G. Ahmed, H. Ichikawa, Y. Fukumori, Y. Adsorption of methyl orange onto chitosan from aqueous solution. J. Water Resource Prot. 2 (2010) 898–906. https://doi.org/10.4236/jwarp.2010.210107
[41] M. E. Ignat, V. Dulman, T. Onofrei, Reactive red 3 and direct brown 95 dyes adsorption onto chitosan. Cellulose Chem. Technol. 46 (2012) 357–367.
[42] G. Annadurai, L. Y. Ling, J. F. Lee, Adsorption of reactive dye from an aqueous solution by chitosan: Isotherm, kinetic and thermodynamic analysis. J. Hazard. Mater. 152 (2008) 337–346. https://doi.org/10.1016/j.jhazmat.2007.07.002
[43] P. Miretzky, A. F. Cirelli, Hg(II) removal from water by chitosan and chitosan derivatives: A review. J. Hazard. Mater. 167 (2009) 10–23. https://doi.org/10.1016/j.jhazmat.2009.01.060
[44] S. Chatterjee, D. S. Lee, M. W. Lee, S. H. Woo, Nitrate removal from aqueous solutions by cross-linked chitosan beads conditioned with sodium bisulfate. J. Hazard. Mater. 166 (2009) 508–513. https://doi.org/10.1016/j.jhazmat.2008.11.045
[45] A. A. Alhwaige, T. Agag, H. Ishida, S. Qutubuddin, Biobased chitosan hybrid aerogels with superior adsorption: Role of graphene oxide in CO2 capture. RSC Adv. 3 (2013) 16011–16020. https://doi.org/10.1039/c3ra42022a
[46] P. Setthamongkol, J. Salaenoi, Adsorption capacity of chitosan beads in toxic solutions. Proceedings of World Academy of Science, Eng. Tech. (2012) 178–183.
[47] L. Zhou, J. Liu, Z. Liu, Adsorption of platinum (IV) and palladium (II)from aqueous solution by thiourea-modified chitosan microspheres. J. Hazard. Mater. 172 (2009) 439–446. https://doi.org/10.1016/j.jhazmat.2009.07.030
[48] M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31 (2006) 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
[49] G. Crini, P. M. Badot, Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 33 (2008) 399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
[50] S. Chatterjee, S. Chatterjee, B. P. Chatterjee, A. R. Das, A. K. Guha, Adsorption of a model anionic dye, eosin Y, from aqueous solution by chitosan hydro beads. J. Colloid Interface Sci. 288 (2005) 30–35. https://doi.org/10.1016/j.jcis.2005.02.055
[51] A. Kamari, W. Ngah, M. Chong, M. Cheah, Sorption of acid dyes onto GLA and H2SO4cross-linked chitosan beads. Desalination 249 (2009) 1180–1189. https://doi.org/10.1016/j.desal.2009.04.010
[52] K. Azlan, W. N. Wansaime, L. Lai Ken, Chitosan and chemically modified chitosan beads for acid dyes sorption. J. Environ. Sci. 21 (2009) 296–302. https://doi.org/10.1016/S1001-0742(08)62267-6
[53] V. K. Konaganti, R. Kota, S. Patil, G. Madras, Adsorption of anionic dyes on chitosan grafted poly(alkyl methacrylate). Chem. Eng. J. 158 (2010) 393–401. https://doi.org/10.1016/j.cej.2010.01.003
[54] X. Y. Huang, X.-Y., Bin, J.-P. Bu, H.-T. Jiang, G.-B. Jiang, M.-H. Zheng, Removal of anionic dye eosin Y from aqueous solution using ethylene-diamine modified chitosan. Carbohy. Polymer. 84 (2011) 1350–1356. https://doi.org/10.1016/j.carbpol.2011.01.033
[55] M. S. Chiou, H. Y. Li, Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J. Hazard. Mater. 93 (2002) 233–248. https://doi.org/10.1016/S0304-3894(02)00030-4
[56] M. Chiou, H. Li, Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50 (2003) 1095–1105. https://doi.org/10.1016/S0045-6535(02)00636-7
[57] T. T. Kyaw, K. S. Wint, K. M. Naing, Studies on the sorption behavior of dyes on cross-linked chitosan beads in acid medium. In International Conference on Biomedical Engineering and Technology IPCBEE Singapore, (2011) 174–178.
[58] S. Chatterjee, S. Chatterjee, B. P. Chatterjee, A. K. Guha, Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydro beads: Binding mechanism, equilibrium and kinetics. Colloids Surf. A 299 (2007) 146–152. https://doi.org/10.1016/j.colsurfa.2006.11.036
[59] S. Chatterjee, T. Chatterjee, S. H. Woo, Influence of the polyethylene imine grafting on the adsorption capacity of chitosan beads for reactive black 5 from aqueous solutions. Chem. Eng. J. 166 (2011) 168–175. https://doi.org/10.1016/j.cej.2010.10.047
[60] S. Chatterjee, D. S. Lee, M. W. Lee, S. H. Woo, Congo red adsorption from aqueous solutions by using chitosan hydrogel beads impregnated with non-ionic or anionic surfactant. Bioresour. Technol. 100 (2009) 3862–3868. https://doi.org/10.1016/j.biortech.2009.03.023
[61] S. Chatterjee, T. Chatterjee, S. H. Woo, A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation. Bioresour. Technol. 101 (2010) 3853–3858. https://doi.org/10.1016/j.biortech.2009.12.089
[62] S. Chatterjee, T. Chatterjee, S.-R., Lim, S. H. Woo, Effect of surfactant impregnation into chitosan hydrogel beads formed by sodium dodecyl sulfate gelation for the removal of congo red. Sep. Sci. Technol. 46 (2011) 2022–2031. https://doi.org/10.1080/01496395.2011.592520
[63] S. Chatterjee, T. Chatterjee, S. R. Lim, S. H. Woo, Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation. Environ. Technol. 32 (2011) 1503–1514. https://doi.org/10.1080/09593330.2010.543157
[64] A, Shweta, P. Sonia, Pharamaceutical relevance of cross-linked chitosan in microparticulate drug delivery. Inter. Res. J. Pharm. 4 (2013) 45–51.
[65] Y. Jing, Q. Liu, X. Yu, W. Xia, N. Yin. Adsorptive removal of Pb(II) and Cu(II) ions from aqueous solutions by cross-linked chitosan-polyphosphate-epichlorohydrin beads. Separ. Sci. Technol. 48 (2013) 2132–2139. https://doi.org/10.1080/01496395.2013.794433
[66] K.-J. Hsien, C. M. Futalan, W.-C. Tsai, C.-C. Kan, C.-S. Kung, Y.-H. Shen, M.-W. Wan, Adsorption characteristics of copper(II) onto non-cross-linked and cross-linked chitosan immobilized on sand. Desalin. Water Treat. 51 (2013) 5574–5582. https://doi.org/10.1080/19443994.2013.770191
[67] L. Mengatto, M. G. Ferreyra, A. Rubiolo, I. Rintoul, J. Luna, Hydrophilic and hydrophobic interactions in cross-linked chitosan membranes. Mater. Chem. Phys. 139 (2013) 181–186. https://doi.org/10.1016/j.matchemphys.2013.01.019
[68] N. Alves, J. Mano, Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Intern. J. Biol. Macromol. 43 (2008) 401–414. https://doi.org/10.1016/j.ijbiomac.2008.09.007
[69] R. Jayakumar, M. Prabaharan, R. Reis, J. Mano, Graft copolymerized chitosan—Present status and applications. Carbohy. Polym. 62 (2005), 142–158. https://doi.org/10.1016/j.carbpol.2005.07.017
[70] M.-S. Chiou, W.-S. Kuo, H.-Y. Li, Removal of reactive dye from wastewater by adsorption using ECH cross-linked chitosan beads as medium. J. Environ. Sci. Health, A Tox. Hazard. Subst. Environ. Eng. 38 (2003) 2621–2631. https://doi.org/10.1081/ESE-120024451
[71] K. Azlan, W. N. Wansaime, L. Lai Ken, Chitosan and chemically modified chitosan beads for acid dyes sorption. J. Environ. Sci. 21 (2009) 296–302. https://doi.org/10.1016/S1001-0742(08)62267-6
[72] H. Yoshida, A. Okamoto, T. Kataoka, Adsorption of acid dye on cross-linked chitosan fibers: Equilibria. Chem. Eng. Sci. 48 (1993) 2267–2272. https://doi.org/10.1016/0009-2509(93)80242-I
[73] M.-S. Chiou, P.-Y. Ho, H.-Y. Li, Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigm. 60 (2004) 69–84. https://doi.org/10.1016/S0143-7208(03)00140-2
[74] T. Feng, F. Zhang, J. Wang, Z. Huang, Adsorption of congo red by cross-linked chitosan film. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5781167.
[75] Y. Xing, X.-M., Sun, B.-H. Li, Pyromellitic dianhydride-modified chitosan microspheres for enhancement of cationic dyes adsorption. Environ. Eng. Sci. 26 (2009) 551–558. https://doi.org/10.1089/ees.2007.0346
[76] N. K. Lazaridis, G. Z. Kyzas, A. A. Vassiliou, D. N. Bikiaris, Chitosan derivatives as biosorbents for basic dyes. Langmuir, 23 (2007) 7634–7643. https://doi.org/10.1021/la700423j
[77] G. Z.Kyzas, N. K. Lazaridis, Reactive and basic dyes removal by sorption onto chitosan derivatives. J. Colloid Interface Sci. 331 (2009) 32–39. https://doi.org/10.1016/j.jcis.2008.11.003
[78] Y. Xing, X. Sun, B. Li, Poly(methacrylic acid)-modified chitosan for enhancement adsorption of water-soluble cationic dyes. Polym. Eng. Sci. 49 (2009) 272–280. https://doi.org/10.1002/pen.21253
[79] T.T. Kyaw, K. S. Wint, K. M. Naing, Studies on the sorption behavior of dyes on cross-linked chitosan beads in acid medium. https://pdfs.semanticscholar.org/f6dd/de46cbf76a8ad88042562da0b02956f17745.pdf.
[80] V. K. Konaganti, R. Kota, S. Patil, G. Madras, Adsorption of anionic dyes on chitosan grafted poly (alkyl methacrylate)s. Chem. Eng. J. 158 (2010) 393–401. https://doi.org/10.1016/j.cej.2010.01.003
[81] T. Anitha, P. S. Kumar, K. S. Kumar, Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of Eosin Yellow dye from aqueous solution. Water Process Eng. 13 (2016) 127-136. https://doi.org/10.1016/j.jwpe.2016.08.003
[82] G. L. Dotto, F. K Rodrigues, E. H. Tanabe, R. Fröhlich, D. A. Bertuol, T. R. Martins, E. L. Foletto, Development of chitosan/bentonite hybrid composite to remove hazardous anionic and cationic dyes from colored effluents. J. Environ. Chem. Eng. 4 (2016) 3230-3239. https://doi.org/10.1016/j.jece.2016.07.004
[83] F. A. Ngwabebhoh, M. Gazi, A. A. Oladipo, Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Eng. Res. Des. 112 (2016) 274-288. https://doi.org/10.1016/j.cherd.2016.06.023
[84] X. Guo, L. Qu, M. Tian, S. Zhu, X. Zhang, X. Tang, K. Sun, Chitosan/Graphene Oxide Composite as an Effective Adsorbent for Reactive Red Dye Removal. Water Environ. Res. 88 (2016) 579-588. https://doi.org/10.2175/106143016X14609975746325
[85] S. T. Akar, E. San, T. Akar, Chitosan–alunite composite: an effective dye remover with high sorption, regeneration and application potential. Carbohyd. Polym. 143 (2016) 318-326. https://doi.org/10.1016/j.carbpol.2016.01.066
[86] R. G. Sánchez-Duarte, J. López-Cervantes, D. I. Sánchez-Machado, M. A. Correa-Murrieta, J. A. Núñez-Gastélum, J. R. Rodríguez-Núñez, Chitosan–alunite composite: an effective dye remover with high sorption, regeneration and application potential. Environ. Eng. Manage. J. 15 (2016) 2469-2478.
[87] J. Gao, L. Zhang, X. Liu W. Zhang, Hierarchically structured, well-dispersed Ti4+ cross-linked chitosan as an efficient and recyclable sponge-like adsorbent for anionic azo-dye removal. RSC Adv. 6 (2016) 106260-106267. https://doi.org/10.1039/C6RA24446G
[88] Y. Jiang, J. L. Gong, G. M. Zeng, X. M. Ou, Y. N. Chang, C. H. Deng, J. Zhang, H. Y. Liu, S. Y. Huang, Magnetic chitosan–graphene oxide composite for anti-microbial and dye removal applications. Int. J. Biol. Macromol. 82 (2016) 702-710. https://doi.org/10.1016/j.ijbiomac.2015.11.021
[89] G. Sheng, S. Zhu, S. Wang, Z. Wang, Removal of dyes by a novel fly ash–chitosan–graphene oxide composite adsorbent. RSC Adv. 6 (2016) 17987-17994. https://doi.org/10.1039/C5RA22091B
[90] L. Zhang, L. Chen, X. Liu, W. Zhang, Effective removal of azo-dye orange II from aqueous solution by zirconium-based chitosan micro composite adsorbent. RSC Adv. 5 (2015) 93840-93849. https://doi.org/10.1039/C5RA12331C
[91] M. Auta, B. H. Hameed, Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chem. Eng. J. 237 (2014) 352-361. https://doi.org/10.1016/j.cej.2013.09.066
[92] Q. Gao, H. Zhu, W. J. Luo, S. Wang, C. G. Zhou, Preparation, characterization, and adsorption evaluation of chitosan-functionalized mesoporous composites. Micropor. Mesopor. Mater. 193 (2014) 15-26. https://doi.org/10.1016/j.micromeso.2014.02.025
[93] X. Jiang, Y. Sun, L. Liu, S. Wang, X. Tian, Adsorption of C.I. Reactive Blue 19 from aqueous solutions by porous particles of the grafted chitosan. Chem. Eng. J. 235 (2014) 151-157. https://doi.org/10.1016/j.cej.2013.09.001
[94] Z. Li, M. Cao, W. Zhang, L. Liu, J. Wang, W. Ge, Y. Yuan, T. Yue, R. Li, W. W. Yu, Affinity adsorption of lysozyme with Reactive Red 120 modified magnetic chitosan microspheres. Food Chem. 145 (2014) 749-755. https://doi.org/10.1016/j.foodchem.2013.08.104
[95] M. Sadeghi-Kiakhanim, M. Arami M, K. Gharanjig, Dye removal from colored-textile wastewater using chitosan-PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies. J. Appl. Polym. Sci. 127 (2013) 2607-2619. https://doi.org/10.1002/app.37615