Novel Chitosan-Based Nanocomposites for Dye Removal Applications

$20.00

Novel Chitosan-Based Nanocomposites for Dye Removal Applications

Aysun Savk, Betul Sen, Buse Demirkan, Esra Kuyuldar, Aysenur Aygun, Mehmet Salih Nas, Fatih Sen

Monodisperse Pd nanoparticles (Pd NPs@CGO) decorated Chitosan-graphene oxide (CGO) are produced to get a nanoadsorbent material to remove methylene blue (MB) from aqueous solutions. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the Pd NPs@CGO. The spectroscopic results showed that Pd NPs@CGO has highly crystalline, monodisperse and colloidal structures. Furthermore, Pd NPs@CGO was highly efficient and stable for methylene blue removal. They provide a high adsorption capacity of 186.42 mg/g and its MB adsorption equilibrium is obtained in ~60 min. Nonetheless, Pd NPs@CGO are reusable and promising nanocomposites for methylene blue removal, keeping 43.05 % of the first efficacy after six adsorption-desorption cycles.

Keywords
Chitosan-Graphene Oxide (CGO), Monodisperse Metal Nanoparticles, Methylene Blue Removal, Recyclable Nanosorbent

Published online 7/1/2018, 24 pages

DOI: http://dx.doi.org/10.21741/9781945291753-3

Part of the book on Chitosan-Based Adsorbents for Wastewater Treatment

References
[1] K. Meral, Ö. Metin, Graphene oxide-magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution, Turkish J. Chem. 38 (2014) 775-782. https://doi.org/10.3906/kim-1312-28
[2] S. Shakoor, A. Nasar, Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using cucumis sativus peel waste as a low-cost adsorbent, Groundw. Sustain. Dev. 5 (2017) 152–159. https://doi.org/10.1016/j.gsd.2017.06.005
[3] S. Shakoor, A. Nasar, Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent, J. Taiwan Inst. Chem. Eng. 66 (2016) 154–163. https://doi.org/10.1016/j.jtice.2016.06.009
[4] Y. Yıldız, T. Onal Okyay, B. Gezer, Z. Dasdelen, B. Sen, F. Sen, Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. Journal of Cluster Science, 27 (2016) 1953–1962. https://doi.org/10.1007/s10876-016-1054-3
[5] Y. Yildiz, T. Onal Okyay, B. Sen, B. Gezer, S. Kuzu, A. Savk, E. Demir, Z. Dasdelen and F. Sen, Highly Monodisperse Pt/Rh Nanoparticles Confined in the Graphene Oxide for Highly Efficient and Reusable Sorbents for Methylene Blue Removal from Aqueous Solutions. Chemistry Select, 2 (2) (2017) 697-70. https://doi.org/10.1002/slct.201601608
[6] F. Liu, H. Zou, J. Hu, H. Liu, J. Peng, Y. Chen, F. Lu, Y. Huo, Fast removal of methylene blue from aqueous solution using porous soy protein isolate based composite beads, Chemical Engineering Journal. 287 (2016) 410-418. https://doi.org/10.1016/j.cej.2015.11.041
[7] M. A. Khan, S. H. Lee, S. Kang, K. J. Paeng, G. Lee, S. E. Oh, and B. H. Jeon, Adsorption Studies for the Removal of Methyl tert-Butyl Ether on Various Commercially Available GACs from an Aqueous Medium, Separation Science and Tech. 46 (2011) 1121-1130. https://doi.org/10.1080/01496395.2010.551395
[8] M. S. Chiou, P. Y. Ho, H. Y. Li, Adsorption of Anionic Dyes in Acid Solutions Using Chemically Cross- Linked Chitosan Beads, Dyes and Pigments. 60 (2004) 69-84. https://doi.org/10.1016/S0143-7208(03)00140-2
[9] L. Bai, Z. Li, Y. Zhang, T. Wang, R. Lu, W. Zhou, H. Gao, and S. Zhang, Synthesis of water-dispersible graphene-modified magnetic polypyrrole nanocomposite and its ability to efficiently adsorb methylene blue from aqueous solution, Chemical Engineering Journal. 279 (2015) 757-766. https://doi.org/10.1016/j.cej.2015.05.068
[10] L. Fan, C. Luo, M. Sun, H. Qiu, and X. Li, Synthesis of magnetic-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal, Colloids and Surfaces B: Biointerfaces. 103 (2013) 601-607. https://doi.org/10.1016/j.colsurfb.2012.11.023
[11] F. Liu, S. Chung, G. Oh, T. S. Seo, Three-Dimensional Graphene Oxide Nanostructure for Fast and Efficient Water-Soluble Dye Removal, ACS Applied Materials & Interfaces. 4 (2012) 922-927. https://doi.org/10.1021/am201590z
[12] Qamruzzaman, A. Nasar, Degradation of tricyclazole by colloidal manganese dioxide in the absence and presence of surfactants, J. Ind. Eng. Chem. 20 (2014) 897–902. https://doi.org/10.1016/j.jiec.2013.06.020
[13] Qamruzzaman, A. Nasar, Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants, Chem. Pap. 68 (2014). doi:10.2478/s11696-013-0424-7.
[14] Qamruzzaman, A. Nasar, Degradation of acephate by colloidal manganese dioxide in the absence and presence of surfactants, Desalin. Water Treat. 55 (2015) 2155–2164. https://doi.org/10.1080/19443994.2014.937752
[15] Qamruzzaman, A. Nasar, Treatment of acetamiprid insecticide from artificially contaminated water by colloidal manganese dioxide in the absence and presence of surfactants, RSC Adv. (2014). https://doi.org/10.1039/C4RA09685A
[16] S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, F. Şen, One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst. Nano-Structures & Nano-Objects, 11 (2017) 25–31. https://doi.org/10.1016/j.nanoso.2017.06.002
[17] F. Sen, A. A. Boghossian, S. Sen, et.al. Application of Nanoparticle Antioxidants to Enable Hyperstable Chloroplasts for Solar Energy Harvesting. Advanced Energy Materials, 3 (7) (2013) 881–893. https://doi.org/10.1002/aenm.201201014
[18] B. Şen, N. Lolak, M. Koca, A. Şavk, S. Akocak, F. Şen, Bimetallic PdRu/graphene oxide-based Catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives. Nano-Structures & Nano-Objects, 12 (2017) 33-40. https://doi.org/10.1016/j.nanoso.2017.08.013
[19] J. P. Giraldo, M. P. Landry, S. M. Faltermeier et.al., A Nanobionic Approach to Augment Plant Photosynthesis and Biochemical Sensing Using Targeted Nanoparticles. Nature Materials, 13 (2014) 400–408. https://doi.org/10.1038/nmat3890
[20] F. Sen, Z. W. Ulissi, X. Gong et.al., Spatiotemporal Intracellular Nitric Oxide Signaling Captured Using Internalized, Near-Infrared Fluorescent Carbon Nanotube Nanosensors. Nano Letters, 14 (8) (2014) 4887–4894. https://doi.org/10.1021/nl502338y
[21] R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, F. Sen, Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: A Comparative investigation. Nano-Structures and Nano-Objects, 11 (2017) 13–19. https://doi.org/10.1016/j.nanoso.2017.05.008
[22] N. M. Iverson, P. W. Barone, Mia Shandell, et. al. In vivo biosensing via tissue-localizable near- infrared-fluorescent single-walled carbon nanotubes, Nature Nanotechnology. 8 (11) (2013) 873-880. https://doi.org/10.1038/nnano.2013.222
[23] B. Şahin, E. Demir, A. Aygün et.al. Investigation of the Effect of Pomegranate Extract and Monodisperse Silver Nanoparticle Combination on MCF-7 Cell Line. Journal of Biotechnology 260C (2017) 79-83. https://doi.org/10.1016/j.jbiotec.2017.09.012
[24] B. Şen, E. H. Akdere, A. Şavk, E. Gültekin, H. Göksu and F. Şen, A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile, Applied Catalysis B: Environmental. 225 5 (2018) 148-153. https://doi.org/10.1016/j.apcatb.2017.11.067
[25] F. Sen, A A. Boghossian, S. Sen, et.al. Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy, ACS Nano. 6 (12) (2012) 10632-10645. https://doi.org/10.1021/nn303716n
[26] H. Göksu, B. Kilbas and F. Sen, Recent Advances in the Reduction of Nitro Compounds by Heterogenous Catalysts, Current Organic Chemistry. 21 (9) (2017) 794-820. https://doi.org/10.2174/1385272820666160525123907
[27] B. Şahin, A. Aygün, H. Gündüz, K. Şahin, E. Demir, S. Akocak, F. Şen, Cytotoxic Effects of Platinum Nanoparticles Obtained from Pomegranate Extract by the Green Synthesis Method on the MCF-7 Cell Line, Colloids and Surfaces B: Biointerfaces. 163 (2018) 119–124. https://doi.org/10.1016/j.colsurfb.2017.12.042
[28] J. Zhang, M. P. Landry, P. W. Barone,et.al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes, Nature Nanotechology. 8 (12) (2013) 959-968. https://doi.org/10.1038/nnano.2013.236
[29] J.T. Abrahamson, F. Sen, B. Sempere, et. al. Excess Thermopower and the Theory of Thermopower Waves, ACS Nano.7 (8) (2013) 6533–6544. https://doi.org/10.1021/nn402411k
[30] S. Sen, F. Sen, A. A. Boghossian, et al. The Effect of Reductive Dithiothreitol and Trolox on Nitric Oxide Quenching of Single Walled Carbon Nanotubes, Journal of Physical Chemistry C. 117 (1) (2013) 593-602. https://doi.org/10.1021/jp307175f
[31] Y. Yıldız, T. Onal Okyay, B. Sen, B. Gezer, S. Bozkurt, G. Başkaya and F. Sen, Activated Carbon Furnished Monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions, Journal of Nanoscience and Nanotechnology. 17 (2017) 4799–4804. https://doi.org/10.1166/jnn.2017.13776
[32] S. Eigler, A. Hirsch, Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists, Angewandte Chemie International Edition. 53 (2014) 7720-7738.
[33] J. Xu, H. Lv, S. T. Yang and J. Luo, Preparation of graphene adsorbents and their applications in water purification, Reviews in Inorganic Chem. 33 (2013) 139-160. https://doi.org/10.1515/revic-2013-0007
[34] D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, The chemistry of graphene oxide, Chemical Society Reviews. 39 (2010) 228-240. https://doi.org/10.1039/B917103G
[35] F. Ahmed and D. F. Rodrigues, Investigation of acute effects of graphene oxide on wastewater microbial community: A case study, J. Hazard. Mater. 256–257 (2013) 33-39. https://doi.org/10.1016/j.jhazmat.2013.03.064
[36] İ. Esirden, E. Erken, M. Kaya and F. Sen, Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal. Sci. Technol., 5 (2015) 4452-4457. https://doi.org/10.1039/C5CY00864F
[37] H. Pamuk, B. Aday, M. Kaya, Fatih Şen, Pt Nps@GO as Highly Efficient and Reusable Catalyst for One-Pot Synthesis of Acridinedione Derivatives. RSC Advances, 5 (2015) 49295-49300. https://doi.org/10.1039/C5RA06441D
[38] B. Şen, N. Lolak, Ö. Paralı, M. Koca, A. Şavk, S. Akocak, F. Şen, Bimetallic PdRu/graphene oxide based Catalysts for one-pot three-component synthesis of 2-amino-4H-chromene derivatives, Nano-Structures & Nano-Objects. 12 (2017) 33-40. https://doi.org/10.1016/j.nanoso.2017.08.013
[39] H. Goksu, Y. Yıldız, B. Celik, M. Yazıcı, B. Kılbas and F. Sen, Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane, Chemistry Select. 1 (2016) 953-958. https://doi.org/10.1002/slct.201600207
[40] S. Akocak, B. Şen, N. Lolak, A. Şavk, M. Koca, S. Kuzu, F. Şen, One-pot three-component synthesis of 2-Amino-4H-Chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as highly efficient and recyclable catalyst, Nano-Structures & Nano-Objects. 11 (2017) 25–31. https://doi.org/10.1016/j.nanoso.2017.06.002
[41] Y. Yildiz, E. Erken, H. Pamuk and F. Sen, Monodisperse Pt Nanoparticles Assembled on Reduced Graphene Oxide: Highly Efficient and Reusable Catalyst for Methanol Oxidation and Dehydrocoupling of Dimethylamine-Borane (DMAB) J. Nanosci. Nanotechnol. 16 (2016) 5951-5958. https://doi.org/10.1166/jnn.2016.11710
[42] E. Demir, A. Savk, B. Sen, F. Sen, A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells. Nano-Structures & Nano-Objects, 12 (2017) 41-45. https://doi.org/10.1016/j.nanoso.2017.08.018
[43] T. Demirci, B. Çelik, Y. Yıldız, S. Eriş, M. Arslan, B. Kilbas and F. Sen, One-Pot Synthesis of Hantzsch Dihydropyridines Using Highly Efficient and Stable PdRuNi@GO Catalyst. RSC Advances, 6 (2016) 76948 – 76956. https://doi.org/10.1039/C6RA13142E
[44] B. Çelik, G. Başkaya, Ö. Karatepe, E. Erken, F. Şen, Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. International Journal of Hydrogen Energy, 41 (2016) 5661-5669. https://doi.org/10.1016/j.ijhydene.2016.02.061
[45] H. Goksu, Y. Yıldız, B. Celik, M. Yazıcı, B. Kılbas and F. Sen, Highly Efficient and Monodisperse Graphene Oxide Furnished Ru/Pd Nanoparticles for the Dehalogenation of Aryl Halides via Ammonia Borane. Chemistry Select, 1 (5) (2016) 953-958. https://doi.org/10.1002/slct.201600207
[46] H. Goksu, Y. Yıldız, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of reduced graphene oxide furnished platinum nanocatalyst. Catalysis Science and Technology, 6 (2016) 2318 – 2324. https://doi.org/10.1039/C5CY01462J
[47] B. Aday, Y. Yıldız, R. Ulus, S. Eriş, M. Kaya, and F. Sen, One-Pot, Efficient and Green Synthesis of Acridinedione Derivatives using Highly Monodisperse Platinum Nanoparticles Supported with Reduced Graphene Oxide. New Journal of Chemistry, 40 (2016) 748 – 754. https://doi.org/10.1039/C5NJ02098K
[48] S. Bozkurt, B. Tosun, B. Sen, S. Akocak, A. Savk, M. F. Ebeoğlugil, F. Sen, A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Analytica Chimica Acta 989C (2017) 88-94. https://doi.org/10.1016/j.aca.2017.07.051
[49] Z. Dasdelen, Y. Yıldız, S. Eriş, F. Şen, Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Applied Catalysis B: Environmental 219C (2017) 511-516. https://doi.org/10.1016/j.apcatb.2017.08.014
[50] R. Ayranci, G. Baskaya, M. Guzel, S. Bozkurt, M. Ak, A. Savk, F. Sen, Carbon based Nanomaterials for High Performance Optoelectrochemical Systems. Chemistry Select, 2 (4) (2017) 1548-1555. https://doi.org/10.1002/slct.201601632
[51] B. Aday, H. Pamuk, M. Kaya, and F. Sen, Graphene Oxide as Highly Effective and Readily Recyclable Catalyst Using for the One-Pot Synthesis of 1,8-Dioxoacridine Derivatives, J. Nanosci. Nanotechnol. 16 (2016) 6498-6504. https://doi.org/10.1166/jnn.2016.12432
[52] B. Khodadadi, M. Bordbar, M. Nasrollahzadeh, Facile and green solvothermal synthesis of palladium nanoparticle-nanodiamond-graphene oxide material with improved bifunctional catalytic properties, Journal of the Iranian Chemical Society. 14 (2017) 2503-2512.
[53] F. Sen, Z. Ozturk, S. Sen, G. Gokagac, The preparation and characterization of nano-sized Pt-Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation, Journal of Materials Science. 47 (2012) 8134–8144. https://doi.org/10.1007/s10853-012-6709-3
[54] B. Celik, Y. Yildiz, H. Sert, E. Erken, Y. Koskun, F. Sen, Monodispersed palladium–cobalt alloy nanoparticles assembled on poly(N-vinyl-pyrrolidone) (PVP) as a highly effective catalyst for dimethylamine borane (DMAB) dehydrocoupling, RSC Adv. 6 (2016) 24097 – 24102. https://doi.org/10.1039/C6RA00536E
[55] B. Celik, S. Kuzu, E. Demir, E. Yıldırır, F. Sen, Highly Efficient Catalytic Dehydrogenation of Dimethly Ammonia Borane via Monodisperse Palladium-Nickel Alloy Nanoparticles Assembled on PEDOT, Int. J. Hydrogen Energy. 42 (2017) 23307-23314. https://doi.org/10.1016/j.ijhydene.2017.05.115
[56] T. Kim, X. Fu, D. Warther, M.J. Sailor, Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes, ACS Nano. 11 (2017) 2773-2784. https://doi.org/10.1021/acsnano.6b07820
[57] M. Bordbar, N. Mortazavimanesh, Green synthesis of Pd/walnut shell nanocomposite using Equisetum arvense L. leaf extract and its application for the reduction of 4-nitrophenol and organic dyes in a very short time, Environmental Science and Pollution Research. 24 (2017) 4093-4104. https://doi.org/10.1007/s11356-016-8183-y
[58] L.L. Carvalho, F. Colmati, A.A. Tanaka, Nickel–palladium electrocatalysts for methanol, ethanol, and glycerol oxidation reactions, International Journal of Hydrogen Energy. 42 (2011) 16118-16116. https://doi.org/10.1016/j.ijhydene.2017.05.124
[59] N.R. Elezovic, P. Zabinski, P. Ercius, U.Č. Lačnjevac, N.V. Krstajic, High surface area Pd nanocatalyst on core-shell tungsten based support as a beneficial catalyst for low temperature fuel cells application, Electrochimica Acta. 247 (2017) 674-684. https://doi.org/10.1016/j.electacta.2017.07.066
[60] J. Fan, K. Qi, L. Zhang, S. Yu, X. Cui, Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation, ACS Applied Materials and Interfaces. 9 (2017) 18008-18014. https://doi.org/10.1021/acsami.7b05290
[61] P. Qiu, S. Lian, G. Yang, S. Yang, Halide ion-induced formation of single crystalline mesoporous PtPd bimetallic nanoparticles with hollow interiors for electrochemical methanol and ethanol oxidation reaction, Nano Research. 10 (2017) 1064-1077. https://doi.org/10.1007/s12274-016-1367-4
[62] A. Zhang, Y. Xiao, F. Gong, L. Zhang, Y. Zhang, Solid-state synthesis, formation mechanism and enhanced electrocatalytic properties of Pd nanoparticles supported on reduced graphene oxide, ECS Journal of Solid State Science and Technology. 6 (2017) M13-M18. https://doi.org/10.1149/2.0271701jss
[63] J. Zhang, S. Lu, Y. Xiang, J. Liu, S.P. Jiang, Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity, ChemSusChem. 8 (2015) 2956-2966. https://doi.org/10.1002/cssc.201500107
[64] H. Klug, L. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, Wiley, New York, 1954.
[65] E. Erken, İ. Esirden, M. Kaya and F. Sen, A Rapid and Novel Method for the Synthesis of 5-Substituted 1H-tetrazole Catalyzed by Exceptional Reusable Monodisperse Pt NPs@AC under the Microwave Irradiation. RSC Advances, 5 (2015) 68558-68564. https://doi.org/10.1039/C5RA11426H
[66] Ö. Karatepe, Y. Yıldız, H. Pamuk, S. Eriş, Z. Dasdelen and F. Şen, Enhanced electro catalytic activity and durability of highly mono disperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Advances, 6 (2016) 50851 – 50857. https://doi.org/10.1039/C6RA06210E
[67] E. Erken, H. Pamuk, Ö. Karatepe, G. Başkaya, H. Sert, O. M. Kalfa, F. Şen, New Pt(0) Nanoparticles as Highly Active and Reusable Catalysts in the C1–C3 Alcohol Oxidation and the Room Temperature Dehydrocoupling of Dimethylamine-Borane (DMAB). Journal of Cluster Science, (2016) 27: 9. https://doi.org/10.1007/s10876-015-0892-8
[68] B. Çelik, Y. Yildiz, E. Erken and Y. Koskun, F. Sen, Monodisperse Palladium-Cobalt Alloy Nanoparticles Assembled on Poly (N-vinyl-pyrrolidone) (PVP) as Highly Effective Catalyst for the Dimethylammine Borane (DMAB) dehydrocoupling. RSC Advances, 6 (2016) 24097 – 24102. https://doi.org/10.1039/C6RA00536E
[69] H. Göksu, B. Çelik, Y. Yıldız, B. Kılbaş and F. Şen, Superior monodisperse CNT-Supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in aqueous medium. Chemistry Select, 1 (10) (2016) 2366-2372. https://doi.org/10.1002/slct.201600509
[70] Y. Yıldız, R. Ulus, S. Eris, B. Aday, M. Kaya and F. Sen, Functionalized multi-walled carbon nanotubes (f-MWCNT) as Highly Efficient and Reusable Heterogeneous Catalysts for the Synthesis of Acridinedione Derivatives. Chemistry Select, 1 (13) (2016) 3861–3865.
[71] Y. Yıldız, İ. Esirden, E. Erken, E. Demir, M. Kaya and F. Şen, Microwave (Mw)-assisted Synthesis of 5-Substituted 1H-Tetrazoles via [3+2] Cycloaddition Catalyzed by Mw-Pd/Co Nanoparticles Decorated on Multi-Walled Carbon Nanotubes. Chemistry Select, 1 (8) (2016) 1695-1701. https://doi.org/10.1002/slct.201600265
[72] Y. Yıldız, H. Pamuk, Ö. Karatepe, Z. Dasdelen and F.Sen, Carbon black hybride material furnished monodisperse Platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Advances, 6 (2016) 32858 – 32862. https://doi.org/10.1039/C6RA00232C
[73] E. Erken, Y. Yildiz, B. Kilbas, and F. Sen, Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles for C1 to C3 Alcohol Oxidation and Dehydrogenation of Dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol. 16 (2016) 5944-5950. https://doi.org/10.1166/jnn.2016.11683
[74] B. Çelik, E. Erken, S. Eriş, Y. Yıldız, B. Şahin, H. Pamuk and F. Sen, Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catalysis Science and Technology, 6 (2016) 1685 – 1692. https://doi.org/10.1039/C5CY01371B
[75] B. Çelik, S. Kuzu, E. Erken, Y. Koskun, F. Sen, Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. International Journal of Hydrogen Energy, 41 (2016) 3093-3101. https://doi.org/10.1016/j.ijhydene.2015.12.138
[76] G. Baskaya, I. Esirden, E. Erken, F. Sen, and M. Kaya, Synthesis of 5-Substituted-1H-Tetrazole Derivatives Using Monodisperse Carbon Black Decorated Pt Nanoparticles as Heterogeneous Nanocatalysts. J. Nanosci. Nanotechnol. 17 (2017) 1992-1999. https://doi.org/10.1166/jnn.2017.12867
[77] G. Baskaya, Y. Yıldız, A. Savk, T. Onal Okyay, S. Eris, F. Sen, Rapid, Sensitive, and Reusable Detection of Glucose by Highly Monodisperse Nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosensors and Bioelectronics, 91 (2017) 728–733. https://doi.org/10.1016/j.bios.2017.01.045
[78] E. Demir, B. Sen, F. Sen, Highly efficient nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nano-Structures & Nano-Objects (Invited), 11 (2017) 39-45. https://doi.org/10.1016/j.nanoso.2017.06.003
[79] B. Sen, S. Kuzu, E. Demir, E. Yıldırır, F. Sen, Highly Efficient Catalytic Dehydrogenation of Dimethly Ammonia Borane via Monodisperse Palladium-Nickel Alloy Nanoparticles Assembled on PEDOT. International Journal of Hydrogen Energy, 42 (36) 2017 23307-23314. https://doi.org/10.1016/j.ijhydene.2017.05.115
[80] J.M. Sieben, A.E. Alvarez, V. Comignani, M.M.E. Duarte, Methanol and ethanol oxidation on carbon supported nanostructured Cu core Pt-Pd shell electrocatalysts synthesized via redox displacement, International Journal of Hydrogen Energy. 39 (2014) 11547-11556. https://doi.org/10.1016/j.ijhydene.2014.05.123
[81] D.H. Nagaraju, S. Devaraj, P. Balaya, Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies, Materials Research Bulletin. 60 (2014) 150-157. https://doi.org/10.1016/j.materresbull.2014.08.027
[82] Saipanya, S., S. Lapanantnoppakhun, T. Sarakonsri, Electrochemical deposition of platinum and palladium on gold nanoparticles loaded carbon nanotube support for oxidation reactions in fuel cell, Journal of Chemistry. (2014) http://dx.doi.org/10.1155/2014/104514.
[83] G. Yang, Y. Zhou, H.B. Pan, (…), Zhu, J. J, Y. Lin, Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium, Ultrasonics Sonochemistry. 28 (2016) 192-198. https://doi.org/10.1016/j.ultsonch.2015.07.021
[84] Y. Gao, F. Wang, Y. Wu, R. Naidu, Z. Chen, Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles, Chemical Engineering Journal. 285 (2016) 459-466. https://doi.org/10.1016/j.cej.2015.09.078
[85] K. Mishra, N. Basavegowda, Y.R. Lee, Biosynthesis of Fe, Pd, and Fe-Pd bimetallic nanoparticles and their application as recyclable catalysts for [3 + 2] cycloaddition reaction: A comparative approach, Catalysis Science and Technology. 5 (2015) 2612-2621. https://doi.org/10.1039/C5CY00099H
[86] F. Sen, and G. Gokagac, Different sized platinum nanoparticles supported on carbon: An XPS study on these methanol oxidation catalysts. Journal of Physical Chemistry C, 111 (2007) 5715-5720. https://doi.org/10.1021/jp068381b
[87] F. Sen, and G. Gokagac, The activity of carbon supported platinum nanoparticles towards methanol oxidation reaction – role of metal precursor and a new surfactant, tert-octanethiol. Journal of Physical Chemistry C, 111 (2007) 1467-1473. https://doi.org/10.1021/jp065809y
[88] F. Sen, and G. Gokagac, Improving Catalytic Efficiency in the Methanol Oxidation Reaction by Inserting Ru in Face-Centered Cubic Pt Nanoparticles Prepared by a New Surfactant, tert-Octanethiol. Energy & Fuels, 22 (3) (2008) 1858- 1864. https://doi.org/10.1021/ef700575t
[89] F. Sen, Z. Ozturk, S. Sen, G. Gokagac, The preparation and characterization of nano-sized Pt-Pd alloy catalysts and comparison of their superior catalytic activities for methanol and ethanol oxidation. Journal of Materials Science, 47 (2012) 8134–8144. https://doi.org/10.1007/s10853-012-6709-3
[90] S. Sen, F. Sen, G. Gokagac, Preparation and characterization of nano-sized Pt–Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys. Chem. Chem. Phys., 13 (2011) 6784-6792. https://doi.org/10.1039/c1cp20064j
[91] F. Sen, S. Sen, G. Gokagac, Efficiency enhancement in the methanol/ethanol oxidation reactions on Pt nanoparticles prepared by a new surfactant, 1,1-dimethyl heptanethiol, and surface morphology by AFM. Phys. Chem. Chem. Phys., 13 (2011) 1676-1684. https://doi.org/10.1039/C0CP01212B
[92] F. Sen, S. Ertan, S. Sen, G. Gokagac, Platinum nanocatalysts prepared with different surfactants for C1 to C3 alcohol oxidations and their surface morphologies by AFM. Journal of Nanoparticle Research, 14 (2012) 922-26. https://doi.org/10.1007/s11051-012-0922-5
[93] F. Sen, S. Sen, G. Gokagac, High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. Journal of Nanoparticle Research, 15 (2013) 1979. https://doi.org/10.1007/s11051-013-1979-5
[94] F. Sen, and G. Gokagac, Pt Nanoparticles Synthesized with New Surfactans: Improvement in C1-C3 Alcohol Oxidation Catalytic Activity. Journal of Applied Electrochemistry, 44(1) (2014) 199 – 207. https://doi.org/10.1007/s10800-013-0631-5
[95] F. Şen, Y. Karataş, M. Gülcan, M. Zahmakıran, Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine- borane. RSC Advances, 4 (4) (2014) 1526-1531. https://doi.org/10.1039/C3RA43701A
[96] Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, F. Şen, Different ligand based monodispersed metal nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. International Journal of Hydrogen Energy, 42 (18) 2017 13061-13069. https://doi.org/10.1016/j.ijhydene.2017.03.230
[97] B. Sen, S. Kuzu, E. Demir, S. Akocak, F. Sen, Monodisperse Palladium-Nickel Alloy Nanoparticles Assembled on Graphene Oxide with the High Catalytic Activity and Reusability in the Dehydrogenation of Dimethylamine-Borane. International Journal of Hydrogen Energy, 42 (36) (2017) 23276-23283. https://doi.org/10.1016/j.ijhydene.2017.05.113
[98] B. Sen, S. Kuzu, E. Demir et.al., Polymer-Graphene hybride decorated Pt Nanoparticles as highly eficient and reusable catalyst for the Dehydrogenation of Dimethylamine-borane at room temperature. International Journal of Hydrogen Energy, 42 (36) (2017) 23284-23291. https://doi.org/10.1016/j.ijhydene.2017.05.112
[99] B. Sen, S. Kuzu, E. Demir, et.al, Highly Monodisperse RuCo Nanoparticles decorated on Functionalized Multiwalled Carbon Nanotube with the Highest Observed Catalytic Activity in the Dehydrogenation of Dimethylamine Borane. International Journal of Hydrogen Energy, 42 (36) (2017) 23292-23298. https://doi.org/10.1016/j.ijhydene.2017.06.032
[100] S. Eris, Z. Daşdelen, F. Sen, Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for Methanol electrooxidation, International Journal of Hydrogen Energy. 43 (1) (2018) 385-390. https://doi.org/10.1016/j.ijhydene.2017.11.063
[101] S. Eris, Z. Daşdelen, F. Sen, Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells, Journal of Colloid and Interface Science. 513 (2018) 767–773. https://doi.org/10.1016/j.jcis.2017.11.085
[102] B. Sen, S. Kuzu, E. Demir, T. Onal Okyay, F. Sen, Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. International Journal of Hydrogen Energy, 42 (36) (2017) 23299-23306. https://doi.org/10.1016/j.ijhydene.2017.04.213
[103] S. Eris, Z. Daşdelen, Y. Yıldız, F. Sen, Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for Methanol oxidation, International Journal of Hydrogen Energy. 43 (3) 2018 1337–1343. https://doi.org/10.1016/j.ijhydene.2017.11.051
[104] K. T. Wong, N. C. Eu, S. Ibrahim, H. Kim, Y. Yoon, and M. Jang, Recyclable magnetite-loaded palm shell-waste based activated carbon for the effective removal of methylene blue from aqueous solution. Journal of Cleaner Production, 115(2016) 337-342. https://doi.org/10.1016/j.jclepro.2015.12.063
[105] Z. Chen, J. Fu, M. Wang, X. Wang, J. Zhang, Q. Xu, and R. A. Lemons, Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles, Appl. Surf. Sci., 289 (2014) 495–501. https://doi.org/10.1016/j.apsusc.2013.11.022
[106] S. Qu, F. Huang, S. Yu, G. Chen, and J. Kong, Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Journal of Hazardous Materials, 160 (2008) 643-647. https://doi.org/10.1016/j.jhazmat.2008.03.037
[107] Y. El Mouzdahir, A. Elmchaouri, R. Mahboub, A. Gil, and S. Korili, Adsorption of Methylene Blue from Aqueous Solutions on a Moroccan Clay. Journal of Chemical & Engineering Data, 52 (2007) 1621-1625. https://doi.org/10.1021/je700008g
[108] GK. Ramesha, AV. Kumara, H.B Muralidhara, S. Sampath, Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid Interface Science, 361 (2011) 270. https://doi.org/10.1016/j.jcis.2011.05.050
[109] F. He, JT. Fan, D. Ma, L. Zhang, C. Leung, HL. Chan. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding. Carbon, 48 (2010) 3139. https://doi.org/10.1016/j.carbon.2010.04.052
[110] T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B, 90 (2012) 197. https://doi.org/10.1016/j.colsurfb.2011.10.019
[111] Y. Yao, S. Miao, S. Yu, L.P. Ma, H. Sun, S.J. Wang, Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. Colloid Interface Sci, 379 (2012) 20. https://doi.org/10.1016/j.jcis.2012.04.030
[112] W. Zhang, H. Yan, H. Li, Z. Jiang, L. Dong, X. Kan, et al. Removal of dyes from aqueous solutions by straw based adsorbents: Batch and column studies. Chem Eng J, 168 (2011) 1120–7. https://doi.org/10.1016/j.cej.2011.01.094
[113] H. Deng, J. Lu, G. Li, G. Zhang, X. Wang, Adsorption of methylene blue on adsor- bent materials produced from cotton stalk. Chem Eng J 172 (2011) 326–34. https://doi.org/10.1016/j.cej.2011.06.013
[114] G. Akkaya, F. Guzel, Application of some domestic wastes as new low-cost biosorbents for removal of methylene blue: kinetic and equilibrium studies. Chem Eng Commun 201 (2014) 557–78. https://doi.org/10.1080/00986445.2013.780166
[115] X. Chen, S. Lv, S. Liu, P. Zhang, A. Zhang, J. Sun, et al. Adsorption of methylene blue by rice hull ash. Sep Sci Technol 47 (2012) 147–56. https://doi.org/10.1080/01496395.2011.606865
[116] J. Liang, J .Wu, P. Li, X. Wang, B. Yang, Shaddock peel as a novel low-cost adsor- bent for removal of methylene blue from dye wastewater. Desalination Water Treat 39 (2012) 70–5. https://doi.org/10.1080/19443994.2012.669160
[117] Q. Zhou, W. Gong, C. Xie, X. Yuan, Y. Li, C. Bai, et al. Biosorption of methylene blue from aqueous solution on spent cottonseed hull substrate for pleurotus ostreatus cultivation. Desalination Water Treat 29 (2011) 317–25. https://doi.org/10.5004/dwt.2011.2238
[118] R.R. Krishni, K.Y. Foo, B.H. Hameed, Adsorptive removal of methylene blue using the natural adsorbent-banana leaves. Desalination Water Treat 52 (2014) 6104–12. https://doi.org/10.1080/19443994.2013.815687
[119] A. Ayla, A. Cavus, Y. Bulut, Z. Baysal, C. Aytekin, Removal of methylene blue from aqueous solutions onto Bacillus subtilis : determination of kinetic and equilib- rium parameters. Desalination 51 (2013) 7596–603. https://doi.org/10.1080/19443994.2013.791780