Methodology and Physical Characterization of Nanoparticles using Photophysical Techniques

$20.00

Methodology and Physical Characterization of Nanoparticles using Photophysical Techniques

Arnab Maity, Samita Basu

Photochemical techniques involving UV-VIS absorption and emission of light quanta have yielded significant information through electronic perturbation of surface electrons in nano-particle systems used for biological applications. Elucidation of various mechanistic processes improvised the use of sophisticated photonic detecting systems that have been discussed in a simple and lucid manner in this article through citation of literature examples and also from the works of authors’ own laboratory. This includes steady-state absorption and emission spectroscopy, time-resolved photodynamic spectroscopy, laser flash photolysis study as well as fluorescence photo imaging systems applied to cellular applications.

Keywords
UV-Vis Absorption Spectroscopy, Plasmon Absorption Band, Ru:CNDEDAs, Photo induced Electron Transfer (PET), TCSPC, Femtosecond Fluorescence Upconversion, Laser Flash Photolysis

Published online 7/1/2018, 29 pages

DOI: http://dx.doi.org/10.21741/9781945291739-4

Part of the book on Nanomaterials in Bio-Medical Applications

References
[1] N. Kometani, M. Tsubonishi, T. Fujita, K. Asami, and Y. Yonezawa, Preparation and Optical Absorption Spectra of Dye-Coated Au, Ag, and Au/Ag Colloidal Nanoparticles in Aqueous Solutions and in Alternate Assemblies, Langmuir 17 (2001) 578-580. https://doi.org/10.1021/la0013190
[2] S. Link and M.A. El-Sayed, Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles, J. Phys. Chem. B 103(1999) 4212-4217. https://doi.org/10.1021/jp984796o
[3] U. Kreibig, L. Genzel, Optical absorption of small metallic particles, Surf. Sci. 156 (1985) 678 -700. https://doi.org/10.1016/0039-6028(85)90239-0
[4] K. Bera, A. Sau, P. Mondal, R. Mukherjee, D. Mookherjee, A. Metya, A.K. Kundu, D. Mandal, B. Satpati, O. Chakrabarti, and S. Basu, Metamorphosis of Ruthenium-Doped Carbon Dots: In Search of the Origin of Photoluminescence and Beyond, Chem. Mater. 28 (2016) 7404−7413. https://doi.org/10.1021/acs.chemmater.6b03008
[5] S. Mandal, A. Gole , N. Lala , R. Gonnade , V. Ganvir and M. Sastry, Studies on the Reversible Aggregation of Cysteine-Capped Colloidal Silver Particles Interconnected via Hydrogen Bonds, Langmuir, 17 (2001) 6262-6268. https://doi.org/10.1021/la010536d
[6] D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobleya and D.G. Fernig, A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra, Analyst, 139 (2014) 4855–4861. https://doi.org/10.1039/C4AN00978A
[7] W.L. Smith, Spectrochimica Acta Part A 72 (2009) 915- 1134. https://doi.org/10.1016/j.saa.2008.12.025
[8] U.R. Genger, M. Grabolle, S.C. Jaricot, R. Nitschke, and T. Nann, Quantum dots versus organic dyes as fluorescent labels, Nature Methods, 5 (2008) 763 – 775. https://doi.org/10.1038/nmeth.1248
[9] B.A. Ashenfelter, A. Desireddy, S.H. Yau, T. Goodson III, and T.P. Bigioni, Optical Properties and Structural Relationships of the Silver Nanoclusters Ag32(SG)19 and Ag15(SG)11, J. Phys. Chem. C, 121 ( 2017) 1349–1361. https://doi.org/10.1021/acs.jpcc.6b10434
[10] Joseph R. Lakowicz, Principles of Fluorescence Spectroscopy Third Edition, pages 278-327, Springer, 2006.
[11] A. Sau, K. Bera, P. Mondal, B. Satpati, and S. Basu, Distance-Dependent Electron Transfer in Chemically Engineered Carbon Dots, J. Phys. Chem. C, 120, (2016) 26630−26636. https://doi.org/10.1021/acs.jpcc.6b08146
[12] G. Prencipe, S.M. Tabakman, K. Welsher, Z. Liu, A.P. Goodwin, L. Zhang, J. Henry, and H. Dai, PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation, J Am Chem Soc. 131 (2009) 4783–4787. https://doi.org/10.1021/ja809086q
[13] W.T. Al Jamal , K.T. Al-Jamal , P.H. .Bomans , P.M. Frederik , K. Kostarelos, Functionalised-quantum-dot-liposome hybrid as multimodal nanoparticles for cancer , Small, 4 (2008) 1406-15. https://doi.org/10.1002/smll.200701043
[14] S. Nie, D.T. Chiu, and R.N. Zare, Real-Time Detection of Single Molecules in Solution by Confocal Fluorescence Microscopy, Anal. Chem. 67 (1995) 2849-2857. https://doi.org/10.1021/ac00113a019
[15] Laser Scanning Confocal Microscopy, Nathan S. Claxton, Thomas J. Fellers, and Michael W. Davidson: https://www.aptechnologies.co.uk/images/Data/Vertilon/PP6207.pdf
Department of Optical Microscopy and Digital Imaging, National High Magnetic Field Laboratory, The Florida State University, Tallahassee, Florida 32310.
[16] W. Becker, Advanced time-correlated single photon counting techniques. Springer; Berlin; New York: 2005. https://doi.org/10.1007/3-540-28882-1
[17] W. Becker, The bh TCSPC Handbook. Third. Becker & Hickl Gmbh; 2008.
[18] K. Malarkania, I. Sarkarb, and S. Selvama, In Press, Accepted Manuscript, https://doi.org/10.1016/j.jpha.2017.06.007.
[19] Bernard Valeur, Molecular Fluorescence Principles and Applications, ISBN 3-527-29919-X, pp179-184.
[20] W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science,281 (1998) 2016 – 2018. https://doi.org/10.1126/science.281.5385.2016
[21] M. Bruchez, D.J. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science 281 (1998) 2013 – 2016. https://doi.org/10.1126/science.281.5385.2013
[22] J.R. Taylor, M.M. Fang, S. Nie, Probing Specific Sequences on Single DNA Molecules with Bioconjugated Fluorescent Nanoparticles, Anal. Chem. 72 (2000) 1979 – 1986. https://doi.org/10.1021/ac9913311
[23] R.C. Bailey, J.M. Nam, C.A. Mirkin, J.T. Hupp, Real-Time Multicolor DNA Detection with Chemoresponsive Diffraction Gratings and Nanoparticle Probes, J. Am. Chem. Soc. 125 (2003) 13541 – 13547. https://doi.org/10.1021/ja035479k
[24] E.R. Goldman, E.D. Balighian, H. Mattoussi, M.K. Kuno, J.M. Mauro, P.T. Tran, G.P. Anderson, Avidin:  A Natural Bridge for Quantum Dot-Antibody Conjugates, J. Am. Chem. Soc. 124( 2002) 6378 – 6382. https://doi.org/10.1021/ja0125570
[25] S.J. Rosenthal, I. Tomlinson, E.M. Adkins, S. Schroeter, S. Adams, L. Swafford, J. McBride, Y. Wang, L.J. DeFelice, R.D. Blakely, Targeting Cell Surface Receptors with Ligand-Conjugated Nanocrystals, J. Am. Chem. Soc. 124 (2002) 4586 – 4594. https://doi.org/10.1021/ja003486s
[26] J.K. Jaiswal, H. Mattoussi, J.M. Mauro, S.M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21( 2003) 47 – 51. https://doi.org/10.1038/nbt767
[27] Y.N. Hwang , D.H. Jeong , H.J. Shin , and D. Kim, Femtosecond Emission Studies on Gold Nanoparticles, J. Phys. Chem. B, 106 (2002) 7581–7584. https://doi.org/10.1021/jp020656+
[28] E. Vauthey, Investigations of bimolecular photoinduced electron transfer reactions in polar solvents using ultrafast spectroscopy, J. Photochem. Photobiol. A: Chem. 179 (2006) 1–12. https://doi.org/10.1016/j.jphotochem.2005.12.019
[29] C. Sengupta, and S. Basu, A spectroscopic study to decipher the mode of interaction of some common acridine derivatives with CT DNA within nanosecond and femtosecond time domains, RSC Advances, 5 (2015) 78160-
78171. https://doi.org/10.1039/C5RA13035B
[30] C. Sengupta, P .Mitra, B.K. Seth, D. Mandal and S. Basu, Electronic and spatial control over the formation of transient ion pairs during photoinduced electron transfer between proflavine–amine systems in a subpicosecond time regime, RSC Advances, 7 (2017) 15149 – 15157. https://doi.org/10.1039/C6RA28286E
[31] B.K. Seth and S. Basu, Research Methodology in Chemical sciences Experimental and Theoretical Approach, Chapter-1, pp 1-14. CRC Press, 2017.
[32] S. Aich and S. Basu, Laser flash photolysis studies and magnetic field effect on a new heteroexcimer between N-ethylcarbazole and 1,4-dicyanobenzene in homogeneous and heterogeneous media, J.Chem. Soc. Faraday Trans., 91 (1995) 1593-1600. https://doi.org/10.1039/ft9959101593
[33] D.R. Kattnig, E.W. Evans, V. Déjean, C.A. Dodson, M.I. Wallace, S.R. Mackenzie, C.R. Timmel, P. Hore, Chemical amplification of magnetic field effects relevant to avian magnetoreception, Nat. Chem. 8 (2016) 384−391.
[34] R. Nishikiori, S. Morimoto, Y. Fujiwara, A. Katsuki, R. Morgunov, Y. Tanimoto, Magnetic Field Effect on Chemical Wave Propagation from the Belousov–Zhabotinsky Reaction, J. Phys. Chem. A, 115 (2011) 4592−4597. https://doi.org/10.1021/jp200985j
[35] P.W. Atkins, T.P Lambert, Annu. Rep. Prog. Chem., Sect. A. Inorg.
and Phys. Chem. 72 (1975) 67- 88. https://doi.org/10.1039/pr9757200067
[36] I.R. Gould, N.J. Turro, M.B. Zimmt, Magnetic Field and Magnetic Isotope Effects on the Products of Organic Reactions, Adv. Phys. Org. Chem. 20 (1984) 1-53. https://doi.org/10.1016/S0065-3160(08)60147-1
[37] U.E. Steiner, T. Ulrich, Magnetic field effects in chemical kinetics and related phenomena, Chem. Rev. 89 (1989) 51-147. https://doi.org/10.1021/cr00091a003
[38] K. Bhattacharyya, and M Chowdhury, Environmental and magnetic field effects on exciplex and twisted charge transfer emission, Chem. Rev. 93,(1993) 507-53. https://doi.org/10.1021/cr00017a022
[39] S. Aich, S. Basu, Magnetic Field Effect: A Tool for Identification of Spin State in a Photoinduced Electron-Transfer Reaction, J. Phys. Chem. A 102 (1998) 722-729. https://doi.org/10.1021/jp972264m
[40] T. Sengupta,. S.D. Choudhury and S. Basu, Medium-Dependent Electron and H Atom Transfer between 2‘-Deoxyadenosine and Menadione:  A Magnetic Field Effect Study, J. Am. Chem. Soc. 126 (2004) 10589-10593. https://doi.org/10.1021/ja0490976
[41] D. Dey, A. Bose, M. Chakraborty, S. Basu, Magnetic Field Effect on Photoinduced Electron Transfer between Dibenzo[a,c]phenazine and Different Amines in Acetonitrile−Water Mixture, J. Phys. Chem. A 111 (2007) 878−884. https://doi.org/10.1021/jp0661802