Multi-Walled Carbon Nanotubes (MWNTs) and their Composites for the Treatment of Organic Compounds in Industrial and Municipal Wastewater


Multi-Walled Carbon Nanotubes (MWNTs) and their Composites for the Treatment of Organic Compounds in Industrial and Municipal Wastewater

Q. Zaib, F. Ahmad

The presence of common industrial organic compounds and emerging micropollutants (e.g., pharmaceuticals and personal care products) in industrial and municipal wastewaters, respectively, has been recognized as a serious environmental problem owing to the recalcitrance and persistence of these compounds in the aquatic environment. In the past two decades, carbon nanotubes and their composites have been gradually applied for the removal of undesirable organic contaminants from water via adsorption. This chapter describes the removal of established toxic chemicals from oil and gas produced water and emerging micropollutants from treated municipal wastewater through the application of multiwalled carbon nanotubes (MWNTs) and their composites with titanium dioxide.

MWNTs, TiO₂, Adsorption, Photocatalysis, Organic Compounds

Published online 5/1/2018, 21 pages


Part of the book on Organic Pollutants in Wastewater II

[1] A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review, Chem. Eng. J. 157 (2010) 277-296.
[2] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000:  A National Reconnaissance, Environ. Sci. Technol. 36 (2002) 1202-1211.
[3] B. Halling-Sørensen, S.N. Nielsen, P. Lanzky, F. Ingerslev, H.H. Lützhøft, S. Jørgensen, Occurrence, fate and effects of pharmaceutical substances in the environment-A review, Chemosphere 36 (1998) 357-393.
[4] L. Haller, G. Hutton, J. Bartram, Estimating the costs and health benefits of water and sanitation improvements at global level, J. Water Health 5 (2007) 467-480.
[5] H. Ma, C. Burger, B.S. Hsiao, B. Chu, Highly permeable polymer membranes containing directed channels for water purification, ACS Macro Lett. 1 (6) (2012) 723-726.
[6] Y.F. Sun, A.M. Zhang, Y.Yin, Y.M. Dong, Y.C. Cui, X. Zhang, J.M. Hong, The investigation of adsorptive performance on modified multi-walled carbon nanotubes by mechanical ball milling, Mater. Chem. Phys. 101 (2007) 30-34.
[7] J.-G. Yu, X.-H. Zhao, H. Yang, X.-H. Chen, Q. Yang, L.-Y. Yu, J.-H. Jiang, X.-Q. Chen, Aqueous adsorption and removal of organic contaminants by carbon nanotubes, Sci. Total Environ. 482 (2014) 241-251.
[8] A. Demirbas, Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review, J. Hazard. Mater. 167 (2009) 1-9.
[9] Q. Zaib, Characterization, functionalization, and adsorption behavior of single-walled carbon nanotubes towards bisphenol A and 17 beta-estradiol, Thesis (2011) University of South Carolina.
[10] Q. Zaib, B. Mansoor, F. Ahmad, Photo-regenerable multi-walled carbon nanotube membranes for the removal of pharmaceutical micropollutants from water, Environ. Sci.: Processes Impacts 15 (2013) 1582-1589.
[11] R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes–the route toward applications, Science 297 (2002) 787-792.
[12] V.K.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water: A review, Sci. Total Environ. 408 (2009) 1-13.
[13] L. Joseph, Q. Zaib, I.A. Khan, N.D. Berge, Y.-G. Park, N.B. Saleh, Y. Yoon, Removal of bisphenol A and 17α-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes, Water Res. 45 (2011) 4056-4068.
[14] Q. Zaib, I.A. Khan, N.B. Saleh, J.R. Flora, Y.-G. Park, Y. Yoon, Removal of Bisphenol A and 17β-Estradiol by Single-Walled Carbon Nanotubes in Aqueous Solution: Adsorption and Molecular Modeling, Water Air Soil Pollut. (2012) 1-13.
[15] Q. Zaib, O.D. Aina, F. Ahmad, Using multi-walled carbon nanotubes (MWNTs) for oilfield produced water treatment with environmentally acceptable endpoints, Environ. Sci.: Processes Impacts 16 (2014) 2039-2047.
[16] D.F. Boesch, N.N. Rabalais, Long-term Environmental Effects of Offshore Oil and Gas Development, Taylor & Francis, Oxford, 2005.
[17] E.T. Igunnu, G.Z. Chen, Produced water treatment technologies, Int. J. Low-Carbon Technol. 9 (2012) 155-157.
[18] A. Fakhru’l-Razi, A. Pendashteh, L.C. Abdullah, D.R. Biak, S.S. Madaeni, Z.Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater. 170 (2009) 530-551.
[19] J. Neff, K. Lee, E.M. DeBlois, Produced Water: Overview of Composition, Fates, and Effects, Springer, New York, 2011.
[20] J. Ranck, R. Bowman, J. Weeber, L. Katz, E. Sullivan, BTEX Removal from Produced Water Using Surfactant-Modified Zeolite, J. Environ. Eng. 131 (2005) 434-442.
[21] A. Kumar, M. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol. 104 (2017) 1172–1184.
[22] M.S. Mauter, M. Elimelech, Environmental Applications of Carbon-Based Nanomaterials, Environ. Sci. Technol. 42 (2008) 5843-5859.
[23] Q. Zaib H. Fath, Application of carbon nano-materials in desalination processes, Desalin. Water Treat. 51 (2013) 627-636.
[24] Q. Zaib, I.A. Khan, Y. Yoon, J.R. Flora, Y.G. Park, N.B. Saleh, Ultrasonication study for suspending single-walled carbon nanotubes in water, J. Nanosci. Nanotechnol. 12 (2012) 3909-3917.
[25] Global Carbon Nanotubes Market – SWCNT, MWCNT, Technology, Applications, Trends & Outlook (2011 – 2016),”, , 2011.
[26] M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, Science 339 (2013) 535-539.
[27] G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, X. Guo, Cytotoxicity of Carbon Nanomaterials:  Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene, Environ. Sci. Technol. 39 (2005) 1378-1383.
[28] A. Alsharhan, Asab Field–United Arab Emirates, Rub Al Khali Basin, Abu Dhabi, 1993
[29] H. Al-Johani, M.A. Salam, Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution, J. Colloid Interface Sci. 360 (2011) 760-767.
[30] J. H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon 49 (2011) 2581-2602.
[31] A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon 39 (2001) 507-514.
[32] G.D. Sheng, D.D. Shao, X.M. Ren, X.Q. Wang, J. X. Li, Y.X. Chen, X.K. Wang, Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes, J. Hazard. Mater. 178 (2010) 505-516.
[33] M. Kragulj, J. Tričković, B. Dalmacija, Á. Kukovecz, Z. Kónya, J. Molnar, S. Rončević, Molecular interactions between organic compounds and functionally modified multiwalled carbon nanotubes, Chem. Eng. J. 225 (2013) 144-152.
[34] W. Chen, L. Duan, D. Zhu, Adsorption of polar and nonpolar organic chemicals to carbon nanotubes, Environ. Sci. Technol. 41 (2007) 8295-8300.
[35] A. Nikolaou, S. Meric, D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments, Anal. Bioanal.Chem. 387 (2007) 1225-1234.
[36] T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett. 131 (2002) 5-17.
[37] S. Monteiro, A.A. Boxall, Occurrence and Fate of Human Pharmaceuticals in the Environment, in D.M. Whitacre, M. Fernanda, F.A. Gunther (Eds.), Reviews of Environmental Contamination and Toxicology, Springer, New York, 2010, pp. 53-154.
[38] J. Radjenovic, M. Petrovic, D. Barceló, Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor, Anal. Bioanal. Chem. 387 (2007) 1365-1377.
[39] T.A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers, Water Res. 32 (1998) 3245-3260.
[40] B. Li, T. Zhang, Biodegradation and Adsorption of Antibiotics in the Activated Sludge Process, Environ. Sci. Technol. 44 (2010) 3468-3473.
[41] F.J. Benitez, J.L. Acero, F.J. Real, G. Roldan, F. Casas, Comparison of different chemical oxidation treatments for the removal of selected pharmaceuticals in water matrices, Chem. Eng. J. 168, (2011) 1149-1156.
[42] T. Urase, T. Kikuta, Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process, Water Res. 39 (2005) 1289-1300.
[43] X.-S. Miao, J.-J. Yang, C.D. Metcalfe, Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant, Environ. Sci. Technol. 39 (2005) 7469-7475.
[44] Z.-C. Di, J. Ding, X.-J. Peng, Y.-H. Li, Z.-K. Luan, J. Liang, Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles, Chemosphere 62 (2006) 861-865.
[45] X. Peng, Z. Luan, J. Ding, Z. Di, Y. Li, B. Tian, Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water, Mater. Lett. 59 (2005) 399-403.
[46] K. Yang, L. Zhu, B. Xing, Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials, Environ. Sci. Technol. 40 (2006) 1855-1861.
[47] Q. Zaib, I.A. Khan, N. Saleh, J. Flora, Y.-G. Park, Y. Yoon, Removal of Bisphenol A and 17β-Estradiol by Single-Walled Carbon Nanotubes in Aqueous Solution: Adsorption and Molecular Modeling, Water Air Soil Pollut. 223 (2012) 1-13.
[48] X.M. Yan, B.Y. Shi, J.J. Lu, C.H. Feng, D.S. Wang, H.X. Tang, Adsorption and desorption of atrazine on carbon nanotubes, J. Colloid Interface Sci. 321 (2008) 30-38.
[49] R. Smajda, Á. Kukovecz, Z. Kónya, I. Kiricsi, Structure and gas permeability of multi-wall carbon nanotube buckypapers, Carbon 45 (2007) 1176-1184.
[50] Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Transparent, conductive carbon nanotube films, Science 305 (2004) 1273-1276.
[51] A.P. Terzyk, G. Rychlicki, The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: The temperature dependence of adsorption at the neutral pH, Colloids Surf. A: Physicochem. Eng. Aspects 163 (2000) 135-150.
[52] Z. Yu, S. Peldszus, P.M. Huck, Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound—Naproxen, carbamazepine and nonylphenol—on activated carbon, Water Res. 42 (2008) 2873-2882.
[53] A.S. Mestre, J. Pires, J.M.F. Nogueira, A.P. Carvalho, Activated carbons for the adsorption of ibuprofen, Carbon 45 (2007) 1979-1988.
[54] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon 46 (2008) 833-840.
[55] R. Förch, H. Schönherr, A. Tobias, A. Jenkins, Appendix C: Contact Angle Goniometry, in Surface Design: Applications in Bioscience and Nanotechnology, Wiley-VCH Verlag GmbH & Co. KGaA, 2009, pp. 471-473.
[56] C. Martínez, M. Canle L, M.I. Fernández, J.A. Santaballa, J. Faria, Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO₂, ZnO and multi-walled carbon nanotubes–anatase composites, Appl. Catal. B: Environ. 102 (2011) 563-571.
[57] H. Wang, H.-L. Wang, W.-F. Jiang, Solar photocatalytic degradation of 2,6-dinitro-p-cresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)–TiO₂ composite photocatalysts, Chemosphere 75 (2009) 1105-1111.
[58] Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, TiO₂−Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO₂−Graphene Truly Different from Other TiO₂−Carbon Composite Materials?, ACS Nano 4 (2010) 7303-7314.
[59] SRC, PhysProp Database, Ed. 2011.
[60] T.X. Bui, H. Choi, Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica, Chemosphere 80 (2010) 681-686.