Treatment of Refractory Organic Pollutants using Ionic Liquids


Treatment of Refractory Organic Pollutants using Ionic Liquids

I.M. AlNashef, R. Sulaiman, S.S. AlSaleem

In recent years, the pollutants that are refractory to treat by conventional biological, physical, and chemical methods together with the stricter restrictions imposed by new legislation have caused many researchers to look for alternative treatment processes. In addition, there is uncertainty regarding the formation of toxic by products following conventional chemical oxidation. Halogenated hydrocarbons (HHCs), which are priority chemicals, have been used extensively in a number of industrial processes. However, it was discovered that many of these halogenated hydrocarbons are carcinogens and have serious negative impact on the eco system. Ionic liquids (ILs), a new class of solvents have many favorable characteristics, e.g. low vapor pressure, non-flammability, ability to dissolve polar and non-polar compounds, and thermal stability. In this chapter, the use of ILs in the treatment of water contaminated with halogenated hydrocarbons pollutants is presented.

Ionic Liquids, Water Treatment, Refractory Pollutants, Halogenated Hydrocarbons, Superoxide Ion, Green Engineering

Published online 5/1/2018, 29 pages


Part of the book on Organic Pollutants in Wastewater II

[1] M. Luan, G. Jing, Y. Piao, D. Liu, L. Jin, Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation, Arab. J. Chem. 10 (2017) S769-S776.
[2] J. Levec, A. Pintar, Catalytic wet-air oxidation processes: A review, Catal. Today 124 (2007) 172-184.
[3] H. Debellefontaine, M. Chakchouk, J. Foussard, D. Tissot, P. Striolo, Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation®, Environ. Pollut. 92 (1996) 155-164.
[4] T.G. Danis, T.A. Albanis, D.E. Petrakis, P.J. Pomonis, Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminum phosphates, Water Res. 32 (1998) 295-302.
[5] F. Zimmermann, New waste disposal process, Chem. Eng. 65 (1958) 117-121.
[6] V.S. Mishra, V.V. Mahajani, J.B. Joshi, Wet air oxidation, ‎Ind. Eng. Chem. Res 34 (1995) 2-48.
[7] Metcalf & Eddy Inc., T. Asano, F. Burton, H. Leverenz, R. Tsuchihashi, G. Tchobanoglous, Water Reuse: Issues, Technologies, and Applications, Mc-Graw Hill, NewYork, USA, 2007.
[8] Metcalf & Eddy Inc., G. Tchobanoglous, H.D. Stensel, R. Tsuchihashi, F.L. Burton, Wastewater engineering: treatment and reuse, 5th Edition, McGraw Hill, 2013.
[9] B. Tawabini, N. Fayad, and M. Morsy, The impact of groundwater quality on the removal of methyl tertiary-butyl ether (MTBE) using advanced oxidation technology,‎ Water Sci. Technol. 60 (2009) 2161-2165.
[10] R. J. Watts, Hazardous wastes: sources, pathways, receptors, John-Wiley & Sons, Inc. New Jersy, USA (1998).
[11] P.M. Kutty, A.A. Nomani, T. Thankachan, Analyses of water samples from Jeddah seawater RO/MSF plants for organic pollutants,Technical Report No. SWCC (RDC)-14, Citeseer, 1991.
[12] I.M. AlNashef, M.L. Leonard, M.C. Kittle, M.A. Matthews, J.W. Weidner, Electrochemical generation of superoxide in room-temperature ionic liquids, Electrochem. Solid State Lett. 4 (2001) D16-D18.
[13] M.S. Callahan, B. Green, Hazardous solvent source reduction, McGraw-Hill, Texas, USA (1995).
[14] E. Kalu, R. E. White, In situ degradation of polyhalogenated aromatic hydrocarbons by electrochemically generated superoxide ions, J. Electrochem. Soc. 138 (1991) 3656-3660.
[15] J. Jensen, Chlorophenols in the Terrestrial Environment, in: G. W. Ware, ed. Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, Springe, New York, 1996, pp. 25-51.
[16] M.H. El-Naas, H.A. Mousa, M.E. Gamal, Microbial Degradation of Chlorophenols, in: S. Singh (Ed.) Microbe-Induced Degradation of Pesticides. Environmental Science and Engineering, Springer, New York, 2017, p.p. 23-58.
[17] D. Hale, W. Reineke, and J. Wiegel, Chlorophenol degradation, in: GR. Chaudhry (Ed.), Biological degradation and bioremediation of toxic compounds, Diosorides Press, Portland, OR, USA, 1994, p.p. 74-91.
[18] W. Berson, “Ionic Liquids in Synthesis”, Edited by P. Wasserscheid, T. Welton, Wiley-VCH, (2002).
[19] L. Zaijun, L. Junkang, S. Xiulan, Ionic liquid as novel solvent for extraction and separation in analytical chemistry, in: A. Kokorin (Ed.), Ionic Liquids: Applications and Perspectives, 2011, p.p.181-206.
[20] Y. Deng, Physico-chemical properties and environmental impact of ionic liquids, Ph. D. thesis, Université Blaise Pascal-Clermont-Ferrand II, 2011.
[21] E. Aguilera-Herrador, R. Lucena, S. Cárdenas, M. Valcárcel, Sample treatments based on ionic liquids, in: A. Kokorin, Ionic Liquids: Applications and Perspectives, 2011, p.p. 181-206.
[22] A. Chapeaux, Extraction of alcohols from water using ionic liquids, Ph. D. thesis, University of Notre Dame, 2009.
[23] M. Hayyan, F.S. Mjalli, M.A. Hashim, I.M. AlNashef, Generation of superoxide ion in pyridinium, morpholinium, ammonium, and sulfonium-based ionic liquids and the application in the destruction of toxic chlorinated phenols, Ind. Eng. Chem. Res. 51 (2012) 10546-10556.
[24] J. W. Lee, J. Y. Shin, Y. S. Chun, H. B. Jang, C. E. Song, S.-g. Lee, Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids, Accounts Chem. Res. 43 (2010) 985-994.
[25] E. Siedlecka, M. Czerwicka, J. Neumann, P. Stepnowski, J. Fernández, J. Thöming, Ionic liquids: methods of degradation and recovery, in: A. Kokorin, Ionic Liquids: Theory, Properties, New Approaches, InTech, 2011, p.p. 701-721.
[26] A.S. Barnes, E.I. Rogers, I. Streeter, L. Aldous, C. Hardacre, G.G. Wildgoose, R.G. Compton, Unusual voltammetry of the reduction of O2 in [C4dmim][N (Tf)2] reveals a strong interaction of O2•− with the [C4dmim]+ cation, J. Phys. Chem. C 112 (2008)13709-13715.
[27] SIGMA; SAFC; SIGMA-ALDRICH; ISOTEC; ALDRICH; FLUKA; and SUPELCO, Enabling Technologies: Ionic Liquids, Sigma-Aldrich Co., 5 (2005) 1-23.
[28] K. Vijayaraghavan, T. Padmesh, K. Palanivelu, M. Velan, Biosorption of nickel (II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models, J. Hazard. Mater. 133 (2006) 304-308.
[29] D. Han, K. H. Row, Recent applications of ionic liquids in separation technology, Molecules 15 (2010) 2405-2426.
[30] D.-x. Chen, X.-k. OuYang, Y.-g. Wang, L.-y. Yang, C.-h. He, Liquid–liquid extraction of caprolactam from water using room temperature ionic liquids, Separ. Purif. Tech. 104 (2013) 263-267.
[31] S.S. AlSaleem, Using Potassium Superoxide for Destruction of Extracted Halogenated Hydrocarbons from Water by Ionic Liquid, Ph. D. Thesis, King Saud University, Riyadh, Saudi Arabia, 2014 .
[32] E.W. Neuman, Potassium superoxide and the three-electron bond, Chem. Phys. 2 (1934) 31-33.
[33] G.F. Carter, D.H. Templeton, Polymorphism of sodium superoxide, J. Am. Chem. Soc. 75 (1953) 5247-5249.
[34] B.H.J. Bielski, D.E. Cabelli, R.L. Arudi, A.B. Ross, Reactivity of HO2/O2 radicals in aqueous solution, J. Phys. Chem. Ref. Data 14 (1985) 1041-1100.
[35] T. Ozawa, A. Hanaki, H. Yamamoto. On a spectrally well-defined and stable source of superoxide ion, O- 2, FEBS Lett. 74 (1977) 99-102.
[36] I. Dzidic, D.I. Carroll, R.N. Stillwell, E.C. Horning, Gas phase reactions. Ionization by proton transfer to superoxide anions, J. Am. Chem. Soc. 96 (1974) 5258-5259.
[37] L. Andrews, Matrix Infrared spectrum and bonding in the lithium superoxide molecule, LiO2, J. Am. Chem. Soc. 90 (1968) 7368-7370.
[38] D. Vasudevan, H. Wendt, Electroreduction of oxygen in aprotic media, J. Electroanal. Chem. 392 (1995) 69-74.
[39] X.J. Huang, E.I. Rogers, C. Hardacreand, R.G. Compton, The reduction of oxygen in various room temperature ionic liquids in the temperature range 293-318 K: Exploring the applicability of the stokes-einstein relationship in room temperature ionic liquids, J. Phys. Chem. B 113 (2009) 8953-8959.
[40] P.H. Krupenie, The spectrum of molecular oxygen, J. Phys. Chem. Ref. Data 1 (1972) 423-534.
[41] K.M., Ervin, I. Anusiewicz, P. Skurski, J. Simons, W.C. Lineberger, The only stable state of O2- is the X 2∏g ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV, J. Phys. Chem. A 107 (2003) 8521-8529.
[42] M.R. Green, H. Allen, O. Hill, D.R. Turner, The nature of the superoxide ion in dipolar aprotic solvents: The electron paramagnetic resonance spectra of the superoxide ion in N,N-dimethylformamide–evidence for hydrated forms, FEBS Lett. 103 (1979) 176−180.
[43] P.S. Jain, S. Lal, Electrolytic reduction of oxygen at solid, electrodes in aprotic solvents-the superoxide ion, Electrochim. Acta 27 (1982) 759−763.
[44] M.E. Peover, B.S. White, Electrolytic reduction of oxygen in aprotic solvents: the superoxide ion, Electrochim. Acta 11 (1966) 1061−1067.
[45] J.D. Wadhawan, P.J. Welford, H.B. McPeak, C.E.W. Hahn, R.G. Compton, The simultaneous voltammetric determination and detection of oxygen and carbon dioxide: a study of the kinetics of the reaction between superoxide and carbon dioxide in non-aqueous media using membrane-free gold disc microelectrodes, Sens. Actuators B 88 (2003) 40−52.
[46] Y. Wei, K. Wu, Y Wu, S. Hu, Electrochemical characterization of a new system for detection of superoxide ion in alkaline solution, Electrochem. Commun. 5 (2003) 819−824.
[47] M.M. Islam, M.S. Saha, T. Okajima, T. Ohsaka, Current oscillatory phenomena based on electrogenerated superoxide ion at the HMDE in dimethylsulfoxide, J. Electroanal. Chem. 577 (2005) 145−154.
[48] T. Okajima, T. Ohsaka, Chemiluminescence of indole and its derivatives induced by electrogenerated superoxide ion in acetonitrile solutions, Electrochim. Acta 47 (2002) 1561−1565.
[49] G.J. Hills, L.M. Peter, Electrode kinetics in aprotic media, J. Electroanal. Chem. Interfacial Electrochem. 50 (1974) 175−185.
[50] R.A. Johnson, E.G. Nidy, M.V. Merritt, Superoxide chemistry. Reactions of superoxide with alkyl halides and alkyl sulfonate esters, J. Am. Chem. Soc. 100 (1978) 7960−7966.
[51] E.J. Corey, K.C.Nicolaou, M. Shibasaki, Y. Machida, C.S. Shiner, Superoxide ion as a synthetically useful oxygen nucleophile, Tetrahedron Lett. 16 (1975) 3183−3186.
[52] S. Randström, G.B. Appetecchi, C. Lagergren, A. Moreno, S. Passerini, The influence of air and its components on the cathodic stability of N-butyl-n-methylpyrrolidinium bis (Trifluoromethanesulfonyl) imide, Electrochim. Acta 53 (2007) 1837−1842.
[53] C. Villagrán, L. Aldous, M.C. Lagunas, R.G. Compton, C. Hardacre, Electrochemistry of phenol in bis {(Trifluoromethyl) sulfonyl} amide ([NTf2]−) based ionic liquids, J. Electroanal. Chem. 588 (2006) 27−31.
[54] Silvester, L. Aldous, C. Hardacre, R.G. Compton, An electrochemical study of the oxidation of hydrogen at platinum electrodes in several room temperature ionic liquids, J. Phys. Chem. B 111 (2007) 5000−5007.
[55] S.S. AlSaleem, W. M. Zahid, I.M. AlNashef, M.K. Hadj-Kali, Solubility of halogenated hydrocarbons in hydrophobic ionic liquids: Experimental study and COSMO-RS prediction, J. Chem. Eng. Data 60 (2015) 2926-2936.
[56] I.M. AlNashef, M.A. Hashim, F.S. Mjalli, M. Hayyan, Benign degradation of chlorinated benzene in ionic liquids, IJCEBS 1 (2013) 2320–4087.
[57] A. Makowska, A. Siporska, K. Kobierska, J. Szydłowski, Phase behavior of 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide with chloroform and/or chloroform/carbon tetrachloride mixed solvent, J. Mol. Liq. 199 (2014) 364-366.
[58] A. Siporska, J. Szydłowski, Phase behavior of ionic liquids 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides with halogenated benzenes, J. Chem. Therm. 88 (2015) 22-29.
[59] S.S. AlSaleem, W.M. Zahid, I.M. AlNashef, H. Haider, Extraction of halogenated hydrocarbons using hydrophobic ionic liquids, Separ. Purif. Tech. 184 (2017) 231-239.
[60] N. Deng, M. Li, L. Zhao, C. Lu, S.L. de Rooy, I. M. Warner, Highly efficient extraction of phenolic compounds by use of magnetic room temperature ionic liquids for environmental remediation, J. of Hazard. Mater. 192 (2011) 1350-1357.
[61] Y. Fan, Y. Li, X. Dong, G. Hu, S. Hua, J. Miao, D. Zhou, Extraction of phenols from water with functionalized ionic liquids, Ind. Eng. Chem. Res. 53 (2014) 20024-20031.
[62] S.R. Pilli, T. Banerjee, K. Mohanty, Extraction of pentachlorophenol and dichlorodiphenyltrichloroethane from aqueous solutions using ionic liquids, J. of Ind. Eng. Chem. 18 (2012) 1983-1996.
[63] J. Fan, Y. Fan, Y. Pei, K. Wu, J. Wang, M. Fan, Solvent extraction of selected endocrine-disrupting phenols using ionic liquids, Separ. Purif. Tech. 61 (2008) 324-331.
[64] L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke, Green processing using ionic liquids and CO2, Nature 399 (1999) 28-29.
[65] M. Kermanioryani, M. I. A. Mutalib, K. A. Kurnia, K. C. Lethesh, S. Krishnan, J.-M. Leveque, Enhancement of π–π aromatic interactions between hydrophobic ionic liquids and methylene blue for an optimum removal efficiency and assessment of toxicity by microbiological method, J. Clean Prod. 137 (2016) 1149-1157.
[66] S.T.M. Vidal, M.J. Neiva Correia, M.M. Marques, M.R. Ismael, M.T. Angelino Reis, Studies on the use of ionic liquids as potential extractants of phenolic compounds and metal ions, Separ. Sci. Tech. 39 (2005) 2155-2169.
[67] A.M. Ferreira, J.A.P. Coutinho, A.M. Fernandes, M.G. Freire, Complete removal of textile dyes from aqueous media using ionic-liquid-based aqueous two-phase systems, Separ. Purif. Tech. 128 (2014) 58-66.
[68] S. Lu, L. Pei, A study on phenol migration by coupling the liquid membrane in the ionic liquid, Int. J. Hydrogen Energ. 41 (2016) 15724-15732.
[69] C. Petra, B. Katalin, Application of Ionic Liquids in Membrane Separation Processes, in: A. Kokorin ( Ed.), Ionic Liquids: Applications and Perspectives, InTech, 2011, pp. 561-586.
[70] D. Han, K.H. Row, Recent applications of ionic liquids in separation technology (Review), Molecule 15 (2010) 2405-2426.
[71] M Seiler, J. Jork, K. Asimina, A. Wolfgang, H. Rolf, Separation of azeotropic mixtures using hyperbranched polymers or ionic liquids, AIChE J. 50 (2004) 2439-2454.
[72] Y. Ge, L. Zhang, X. Yuan, W. Geng, J. Ji, Selection of ionic liquids as entrainers for separation of (water + ethanol), J. Chem. Thermodyn. 40 (2008) 1248-1252.
[73] X. Hu, J. Yu, H. Liu, Separation of THF and water by room temperature ionic liquids, Water Sci. Technol. 53 (2006) 245-249.
[74] Q. Zhang, Z. Li, J. Zhang, S. Zhang, L. Zhu, J. Yang, X. Zhang, Y. Deng, Physicochemical properties of nitrile-functionalized ionic liquids, J. Phys. Chem. B 111 (2007) 2864-2872.
[75] L. Zhang,B. Qiao, Y. Ge, D. Deng, J. Ji, Effect of ionic liquids on (vapor + liquid) equilibrium behavior of (water + 2-methyl-2-propanol), J. Chem. Thermodyn. 41 (2009) 138-143.
[76] P. Izák, W. Ruth, Z. Fei, P.J. Dyson, U. Kragl, Selective removal of acetone and butan-1-ol from water with supported ionic liquid-polydimethylsiloxane membrane by pervaporation, Chem. Eng. J. 139 (2008) 318-321.
[77] X.J. Huang, L. Aldous, A.M. O’Mahony, F.J. Del Campo, R.G. Compton, Toward membrane-free amperometric gas sensors: A microelectrode array approach, Anal. Chem. 82 (2010) 5238−5245.
[78] J. Ma, X. Hong, Application of ionic liquids in organic pollutants control, J. Environ. Manage. 99 (2012) 104-109.
[79] A. Brinda Lakshmi, A. Balasubramanian, S. Venkatesan, Extraction of phenol and chlorophenols using ionic liquid [Bmim]+[BF4]−dissolved in tributyl phosphate, Clean – Soil, Air, Water 41 (2013) 349-355.
[80] E. Bekou, D.D. Dionysiou, R.Y. Qian, and G.D. Botsaris, Extraction of Chlorophenols from Water Using Room Temperature Ionic Liquids, ACS Symposium Series, 856 (2003) 544-560.
[81] E.T. Martin, C.M. McGuire, M.S. Mubarak, D.G. Peters, Electroreductive remediation of halogenated environmental pollutants, Chem. Rev. 116 (2016) 15198-15234.
[82] B. Subramanian, Q. Yang, Q. Yang, A.P. Khodadoust, D.D. Dionysiou, Photodegradation of pentachlorophenol in room temperature ionic liquids, J. Photochem. Photobiol. Chem. 192 (2007) 114-121.
[83] Q. Yang, D. D. Dionysiou, Photolytic degradation of chlorinated phenols in room temperature ionic liquids, J. Photochem. Photobiol. Chem. 165 (2004) 229-240.
[84] A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Int. J. Chem. Environ. Eng. 2 (2014) 557-572.
[85] M. Hayyan, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, S. M. Al-Zahrani, K. L. Chooi, Long term stability of superoxide ion in piperidinium, pyrrolidinium and phosphonium cations-based ionic liquids and its utilization in the destruction of chlorobenzenes, J. Electroanal. Chem. 664 (2012) 26-32.
[86] J. Ghilane, C. Lagrost, P. Hapiot, Scanning electrochemical microscopy in nonusual solvents: inequality of diffusion coefficients problem, Anal. Chem. 79 (2007) 7383−7391.
[87] C. Villagrán, L. Aldous, M.C. Lagunas, R.G. Compton, C. Hardacre, Electrochemistry of phenol in bis {(trifluoromethyl) sulfonyl} amide ([NTf2]−) based ionic liquids, J. Electroanal. Chem. 588 (2006) 27−31.
[88] D. Zhang, T. Okajima, F. Matsumoto, T. Ohsaka, Electroreduction of dioxygen in 1-n-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids. J. Electrochem. Soc. 151 (2004) D31−D37.
[89] A. Rene, D. Hauchard, C. Lagrost, P. Hapiot, Superoxide Protonation by Weak Acids in Imidazolium Based Ionic Liquids. J. Phys. Chem. B 113 (2009) 2826−2831.
[90] M.C. Buzzeo, O.V. Klymenko, J.D. Wadhawan, C. Hardacre, K.R. Seddon, R.G. Compton, Kinetic analysis of the reaction between electrogenerated superoxide and carbon dioxide in the room temperature ionic liquids 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide and hexyltriethylammonium bis-(trifluoromethylsulfonyl)imide, J. Phys. Chem. B 108 (2004) 3947−3954.
[91] M.M. Islam, T. Ohsaka, Two-electron quasi-reversible reduction of dioxygen at hmde in ionic liquids: Observation of cathodic maximum and inverted peak, J. Electroanal. Chem. 623 (2008) 147−154.
[92] B. Martiz, R. Keyrouz, S. Gmouh, M. Vaultier, V. Jouikov, Superoxide-stable ionic liquids: New and efficient media for electrosynthesis of functional siloxanes, Chem. Commun. 2004 (2004) 674−675.
[93] M.C. Buzzeo, O.V. Klymenko, J.D. Wadhawan, C. Hardacre, K.R. Seddon, R.G. Compton, Voltammetry of oxygen in the room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis((trifluoromethyl) sulfonyl) imide and hexyltriethylammonium bis((trifluoromethyl) sulfonyl) imide: One-electron reduction to form superoxide. Steady-state and transient behavior in the same cyclic voltammogram resulting from widely different diffusion coefficients of oxygen and superoxide. J. Phys. Chem. A 107 (2003) 8872−8878.
[94] K. Ding, The electrocatalysis of multi-walled carbon nanotubes (MWCNTs) for oxygen reduction reaction (ORR) in room temperature ionic liquids (RTILs) Por, Electrochim. Acta 27 (2009) 165−175.
[95] M.T. Carter, C.L. Hussey, S.K.D. Strubinger, R.A. Osteryoung, Electrochemical reduction of dioxygen in room-temperature imidazolium chloride-aluminum chloride molten salts, Inorg. Chem. 30 (1991) 1149−1151.
[96] R.G. Evans, O.V. Klymenko, S.A Saddoughi, C. Hardacre, R.G. Compton, Electroreduction of oxygen in a series of room temperature ionic liquids composed of group 15-centered cations and anions, J. Phys. Chem. B 108 (2004) 7878−7886.
[97] E.I. Rogers, X.J. Huang, E.J.F. Dickinson, C. Hardacre, R.G. Compton, Investigating the mechanism and electrode kinetics of the oxygen| superoxide (O2|O2•‑) couple in various room-temperature ionic liquids at gold and platinum electrodes in the temperature range 298−318 K, J. Phys. Chem. C 113 (2009) 17811−17823.
[98] Y. Katayama, H. Onodera, M. Yamagata, T Miura, Electrochemical reduction of oxygen in some hydrophobic room-temperature molten salt systems, J. Electrochem. Soc. 151 (2004) A59−A63.
[99] Y. Katayama, K. Sekiguchi, M. Yamagata, T. Miura, Electrochemical behavior of oxygen/superoxide ion couple in 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide room-temperature molten salt, J. Electrochem. Soc. 152 (2005) E247−E250.
[100] D. Zigah, A. Wang, C. Lagrost, P. Hapiot, diffusion of molecules in ionic liquids/organic solvent mixtures. Example of the reversible reduction of O2 to superoxide. J. Phys. Chem. B 113 (2009) 2019−2023.
[101] C.O. Laoire, S. Mukerjee, K.M. Abraham, E.J. Plichta, M.A. Hendrickson, Elucidating the mechanism of oxygen reduction for lithium-air battery applications, J. Phys. Chem. C 113 (2009) 20127−20134.