Removal of Malachite Green from Water and Wastewater by Low-Cost Adsorbents

$20.00

Removal of Malachite Green from Water and Wastewater by Low-Cost Adsorbents

Qasimullah, A. Mohammad, P.F. Rahman, M. Khan

This chapter describes the use of various low-cost adsorbents for the removal of malachite green (MG) from water and wastewater. Malachite green is a cationic dye which is widely used worldwide in the aquaculture industries (silk, wool, cotton, leather, paper etc.) as a therapeutic agent to treat parasites, fungal, and bacterial infections in fish and fish eggs and as an antiseptic for external application on wounds and ulcers. Despite its extensive use, MG has several toxic properties, which are known to cause carcinogenesis, mutagenesis, teratogenesis, and respiratory toxicity. Its oral consumption is also hazardous and carcinogenic. Therefore, it is essential to remove MG from water and wastewater using different low-cost adsorbents. A literature survey reveals that several methods are available for the dyes removal from water and wastewater such as photocatalytic degradation, combined photo-Fenton and biological oxidation, advanced oxidation processes, aerobic degradation, nanofiltration membranes, ozonation, coagulation, fluid extraction, solid phase extraction, and adsorption. Among these, adsorption is a well-known equilibrium separation process and an effective method for water decontamination application. Adsorption has been found to be superior to other techniques for water re-use in terms of initial cost, flexibility, and simplicity of design, ease of operation, and insensitivity to toxic pollutants. Adsorption also does not result in the formation of harmful substances.

Keywords
Adsorption, Malachite Green, Activated Carbon, Bio-adsorbent, Agricultural Waste, Industrial Waste

Published online 5/1/2018, 30 pages

DOI: http://dx.doi.org/10.21741/9781945291715-10

Part of the book on Organic Pollutants in Wastewater II

References
[1] A. Mittal, J. Mittal, V.K. Gupta, Adsorptive removal of hazardous anionic dye ‘‘Congo Red’’ from wastewater using waste materials and recovery by desorption, J. Colloid Interface Sci. 340 (2009) 16–26. https://doi.org/10.1016/j.jcis.2009.08.019
[2] V.K. Gupta, R. Jain, A. Nayak, Removal of the hazardous dye-tartrazine by photodegradation on titanium dioxide surface, Mater. Sci. Eng. C 31 (2011) 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006
[3] S. Srivastava, R. Sinha, D. Roy, Review: Toxicological effects of malachite green, Aquat. Toxicol. 66 (2004) 319-329. https://doi.org/10.1016/j.aquatox.2003.09.008
[4] V.K.Garg, R. Kumar, R. Gupta, Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria, Dyes and Pigments 62 (2004) 1-10. https://doi.org/10.1016/j.dyepig.2003.10.016
[5] S.J. Srivastava, N.D. Singh, A.K. Srivastava, R. Sinha, Acute toxicity of malachite green and its effects on certain blood parameters of a catfish, Heteropneustesfossilis, Aquat. Toxicol. 31 (1995) 241-247. https://doi.org/10.1016/0166-445X(94)00061-T
[6] M. Wawizkiewicz, Anion exchange resins as effective sorbents for acidic dye removal from aqueous solutions and wastewaters, Solvent Extraction and Ion exchange 30 (2012) 507–523. https://doi.org/10.1080/07366299.2011.639253
[7] M. Muthukumar, M.T. Karuppiah, G.B. Raju. Electrochemical removal of CI acid orange 10 from aqueous solutions, Sep. and Purif. Technol. 55 (2007) 198–205. https://doi.org/10.1016/j.seppur.2006.11.014
[8] X. Zhu, Y. Zheng, Z. Chen, Q. Chen, B. Gao, S. Yu, Removal of reactive dye from textile effluent through submerged filtration using hollow fiber composite nanofiltration membrane, Desal. Water Treat. 51 (2013) 6101–6109. https://doi.org/10.1080/19443994.2013.770225
[9] S. Wijannaronga, S. Aroonsrimorakota, P. Thavipokea, A. Kumsopaa, S. Sangjanb, Removal of reactive dyes from textile dyeing industrial effluent by ozonation process, APCBEE Proced. 5 (2013) 279 –282. https://doi.org/10.1016/j.apcbee.2013.05.048
[10] V.P. Kasperchik, A.L. Yaskevich, A.V. Bil’dyukevich, Wastewater treatment for removal of dyes by coagulation and membrane processes, Petr. Chem. 52 (2012) 545–556. https://doi.org/10.1134/S0965544112070079
[11] M. El Haddad, A.B. Regti, M.R. Laamari, R. Mamouni, N. Saffaj, Use of Fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions, J. Mater. Environ. Sci. 5 (2014) 667-674.
[12] K.V. Kumar, S. Sivanesan, V. Ramamurthi, Adsorption of malachite green onto Pithophora sp., a fresh water algae: equilibrium and kinetic modelling, Process Biochem. 40 (2005) 2865–2872. https://doi.org/10.1016/j.procbio.2005.01.007
[13] P.T. Godbole, A.D. Sawant, Removal of malachite green from aqueous solutions using immobilised Saccharomyces cerevisiae, J. Sci. Ind. Res. 65 (2006) 440–443.
[14] X.F. Sun, S.G .Wang, X.W. Liu, Biosorption of malachite green from queous solutions onto aerobic granules: Kinetic and equilibrium studies, Bioresour. Technol. 99 (2008) 3475–3483. https://doi.org/10.1016/j.biortech.2007.07.055
[15] W. Cheng, S.G .Wang, L. Lu, Removal of malachite green (MG) from aqueous solutions by native and heat-treated anaerobic granular sludge, Biochem. Eng. J. 39 (2008) 538–546. https://doi.org/10.1016/j.bej.2007.10.016
[16] X.S. Wang, Invasive freshwater macrophyte alligator weed: novel adsorbent for removal of malachite green from aqueous solution, Water Air Soil Pollut. 206 (2009) 215–223. https://doi.org/10.1007/s11270-009-0097-6
[17] R.R. Kannan, M. Rajasimman, N. Rajamohan, B. Sivaprakash, Brown marine algae Turbinariaconoides as biosorbent for malachite green removal: equilibrium and kinetic modelling, Front Sci. Eng. China 4 (2009) 116–122. https://doi.org/10.1007/s11783-010-0006-7
[18] W.T. Tsai, H.R. Chen, Removal of malachite green from aqueous solution using low-cost chlorella-based biomass, J. Hazard. Mater. 175 (2010) 844–849. https://doi.org/10.1016/j.jhazmat.2009.10.087
[19] A. Altinisik A, E. Gur, Y. Seki, A natural sorbent, Luffacylindrica for the removal of a model basic dye, J. Hazard. Mater. 179 (2010) 658–664. https://doi.org/10.1016/j.jhazmat.2010.03.053
[20] H. Tang, W. Zhou, L. Zhang, Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels, J. Hazard. Mater. 209 (2012) 218–225. https://doi.org/10.1016/j.jhazmat.2012.01.010
[21] R. Rajeshkannan, M. Rajasimman, N. Rajamohan, Removal of malachite green from aqueous solution using hydrillaverticillata-optimization, equilibrium and kinetic studies, Int. J. Civ. Environ. Eng. 2 (2010) 222–229.
[22] A. Singh, S .M. Rani, N.R. Bishnoi, Malachite green dye decolorization on immobilized dead yeast cells employing sequential design of experiments, Ecol. Eng. 47 (2012) 291–296. https://doi.org/10.1016/j.ecoleng.2012.07.001
[23] A. Salima, B. Benaouda, B. Noureddine, L. Duclaux, Application of Ulvalactuca and Systoceirastricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents, Water Res. 47 (2013) 3375–3388. https://doi.org/10.1016/j.watres.2013.03.038
[24] A.K. Sarkar, A. Pal. S. Ghorai, Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly (acrylic acid), Carbohydr. Polym. 111 (2014) 108–115. https://doi.org/10.1016/j.carbpol.2014.04.042
[25] R. Deokar, A. Sabale, Biosorption of methylene blue and malachite green from binary solution onto Ulvalactuca, Int. J. Curr. Microbiol. App. Sci. 3 (2014) 295-304.
[26] Y. Zhou, Y. Min, H. Qiao, Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride, Int. J. Biol. Macromol. 74 (2015) 271–277. https://doi.org/10.1016/j.ijbiomac.2014.12.020
[27] J. Nath, L. Ray, Biosorption of malachite green from aqueous solution by dry cells of Bacillus cereus MMTCC, J. Environ. Chem. Eng. 3 (2015) 386-394. https://doi.org/10.1016/j.jece.2014.12.022
[28] I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses, Colloids Surf. Physico-Chem. Eng. Asp. 264 (2005) 17–28. https://doi.org/10.1016/j.colsurfa.2005.03.027
[29] Y. Xing, G. Wang, Poly(methacrylic acid)-modified sugarcane bagasse for enhanced adsorption of cationic dye, Environ. Technol. 30 (2009) 611–619. https://doi.org/10.1080/09593330902838098
[30] Y. Xing, D. Deng, Enhanced adsorption of malachite green by EDTAD-modified sugarcane bagasse, Sep. Sci. Technol. 44 (2009) 2117–2131. https://doi.org/10.1080/01496390902775588
[31] S. Chowdhury, P. Saha, Adsorption thermodynamics and kinetics of malachite green onto Ca(OH)2-treated fly ash, J. Environ. Eng. 137 (2011) 388–397. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000334
[32] A. Witek-Krowiak, R.G. Szafran, S. Modelski, A. Dawiec, Removal of cationic dyes from aqueous solutions using microspherical particles of fly ash, Water Environ. Res. Res. Publ. Water Environ. Fed. 84 (2012) 162–169. https://doi.org/10.2175/106143011X13233670703657
[33] L. Zhang, H. Zhang, W. Guo, Y. Tian, Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud, Appl. Clay Sci. 93–94 (2014) 85–93. https://doi.org/10.1016/j.clay.2014.03.004
[34] G. Gehlot, S. Verma, S. Sharma, N. Mehta, Adsorption isotherm studies in the removal of malachite green dye from aqueous solution by using coal fly ash, Inter. J. Chem. Studies 3 (2015) 42-44.
[35] I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mischra, Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses, Colloids and Surfaces A 264 (2005) 17-28. https://doi.org/10.1016/j.colsurfa.2005.03.027
[36] C.A. Basar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. of Hazard. Mater. 135 (2006) 232-241. https://doi.org/10.1016/j.jhazmat.2005.11.055
[37] R. Malik, D.S Ramteke, S.R Wate, Adsorption of malachite green on groundnut shell waste based powdered activated carbon, Waste management 27 (2007) 1129-1138. https://doi.org/10.1016/j.wasman.2006.06.009
[38] B.H. Hameed, M.I. El Khaiary, Equilibrium kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2, J. Hazard. Mater. 157 (2008) 344-351. https://doi.org/10.1016/j.jhazmat.2007.12.105
[39] J. Zhang, Y. Li, C. Zhang, Y. Jing, Adsorption of malachite green from aqueous solution onto carbon prepared from Arundodonax root, J. Hazard. Mater. 50 (2008) 774-782. https://doi.org/10.1016/j.jhazmat.2007.05.036
[40] Y.C. Sharma, B. Singh, Uma, Fast removal of malachite green by adsorption on rice husk activated carbon, The Open Environ. Pollution & Toxic. J. 1 (2009) 74-78.
[41] M.H. Baek, C.O. Ijagbemi, S. Jin O, D.S. Kim, Removal of malachite green from aqueous solution using degreased coffee bean, J. Hazard. Mater. 176 (2010) 820-828. https://doi.org/10.1016/j.jhazmat.2009.11.110
[42] T. Santhi, S. Manonmani, T. Smitha, Kinetics and isotherm studies on cationic dyes adsorption onto Annonasquamosa seed activated carbon, Int. J. Eng. Sci. Technol. 2 (2010) 287-295.
[43] S. Nethaji, A. Sivasamy, G. Thennarasu, S. Saravanan, Adsorption of malachite green dye onto activated carbon from Borassusaethiopum flower biomass, J. Hazard. Mater. 181 (2010) 271 -280. https://doi.org/10.1016/j.jhazmat.2010.05.008
[44] L. Wang, J. Zhang, R. Zhao, C. Li, Y. Li, C. Zhang, Adsorption of basic dyes on activated carbon prepared from Polygonumorientale Linn: equilibrium, kinetics and thermodynamic studies, Desal. 254 (2010) 68-74. https://doi.org/10.1016/j.desal.2009.12.012
[45] T. Santhi, S. Manonmani, T. Smitha, Removal of malachite green from aqueous solution by activated carbon prepared from the Epicarpof Ricinuscommunis by adsorption, J. Hazard. Mater. 179 (2010) 178-186. https://doi.org/10.1016/j.jhazmat.2010.02.076
[46] B.R. Venkatraman, K. Hema, V. Nandhakumar, S. Arivoli, Adsorption thermodynamics of malachite green dye onto acid activated low lost carbon, J. Chem. Pharm. Res. 3 (2011) 637-649.
[47] Y.C. Sharma, Adsorptive characteristics of a low cost activated carbon for the reclamation of coloured effluents containing malachite green, J. Chem. Eng. Data 56 (2011) 478–484. https://doi.org/10.1021/je1008922
[48] M.A. Ahmad, R. Alrozi, Removal of malachite green dye from aqueous solution using Rambutanpeel-based activated carbon: Equilibrium, kinetic and thermodynamic studies, Chem. Eng. J. 171 (2011) 510–516. https://doi.org/10.1016/j.cej.2011.04.018
[49] S.P.S Syed, Study of the removal of malachite green from aqueous solution by using solid agricultural waste, Res. J. Chem. Sci. 1 (2011) 88-104.
[50] C. Theivarasu, S.Mylsamy, Removal of malachite green from aqueous solution by activated carbon developed from cocoa (Theobroma Cacao) shell – A kinetic and equilibrium studies. E. J. of Chem. 8 (2011) S363-S371. https://doi.org/10.1155/2011/714808
[51] M.N. Idrisa, Z.A. Ahmada, M.A. Ahmad, Adsorption equilibrium of malachite green dye onto rubber seed coat based activate carbon, Inter. J. Basic App. Sci. 11 (2011) 38-43.
[52] O.S. Bello, M.A. Ahmad, Coconut (Cocosnucifera) shell based activated carbon for the removal of malachite green dye from aqueous solutions, Sep. Sci. Technol. 47 (2012) 903–912. https://doi.org/10.1080/01496395.2011.630335
[53] O.S. Bello, M.A. Ahmad, N. Ahmad, Adsorptive features of banana (Musa paradisiaca) stalk-based activated carbon for malachite green dye removal, Chem. Ecol. 28 (2012) 153–167. https://doi.org/10.1080/02757540.2011.628318
[54] O.S. Bello, Adsorptive removal of malachite green with activated carbon prepared from oil palm fruit fibre by KOH activation and CO2 gasification, S. Afr. J. Chem. 66 (2013) 32–41.
[55] A. Emine, A. Aylin, S. Yoldas¸ Using of activated carbon produced from spent tea leaves for the removal of malachite green from aqueous solution, Ecol. Eng. 52 (2013) 19–27. https://doi.org/10.1016/j.ecoleng.2012.12.032
[56] S.Z. Mohammadi, M.A. Karimi, S.N. Yazdy, T. Shamspu, H. Hamidian, Removal of Pb(II) ions and malachite green dye from wastewater by activated carbon produced from lemon peel, Quim. Nova 37 (2014) 804-809. https://doi.org/10.5935/0100-4042.20140129
[57] M.A. Ahmad, N. Ahmad, O.S. Bello, Adsorptive removal of malachite green dye using durian seed-based activated carbon, Water Air Soil Pollut. 225 (2014) 2057-2075. https://doi.org/10.1007/s11270-014-2057-z
[58] S. Takute, S. Singh, M.K.N. Yenkie, Removal of malachite green from aqueous solution by activated carbon prepared almond shell, Int. J. Chem. Sci. 12 (2014) 663-671.
[59] O.S. Bello, M.A. Ahmad, B. Semire, Scavenging malachite green dye from aqueous solutions using pomelo (Citrus grandis) peels: kinetic, equilibrium and thermodynamic studies, Desal. Water Treat. 56 (2015) 521-535. https://doi.org/10.1080/19443994.2014.940387
[60] S.S Tahir, N. Rauf, Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, Chemosphere 63 (2006) 1842–1848. https://doi.org/10.1016/j.chemosphere.2005.10.033
[61] S. Wang, E. Ariyanto, Competitive adsorption of malachite green and Pb ions on natural zeolite, J. Colloid Interface Sci. 314 (2007) 25–31. https://doi.org/10.1016/j.jcis.2007.05.032
[62] E. Bulut, M.O. zacar, I.A.S. Engil, Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite, J. Hazard Mater. 154 (2008) 613–622. https://doi.org/10.1016/j.jhazmat.2007.10.071
[63] V.Govindasamy, R. Sahadevan, S. Subramanian, D.K. Mahendradas, Removal of malachite green from aqueous solutions by perlite, Int. J. Chem. React. Eng. 7 (2009) 1-22. https://doi.org/10.2202/1542-6580.1889
[64] H. Tahir, U. Hammed, M. Sultan, Q. Jahanzeb, Batch adsorption technique for the removal of malachite green and fast green dyes by using montmorillonite clay as adsorbent, Afr. J. Biotechnol. 9 (2010) 8206–8214. https://doi.org/10.5897/AJB10.911
[65] P.Saha, S. Chowdhury, S. Gupta, I. Kumar, Insight into adsorption equilibrium, kinetics and thermodynamics of malachite green onto clayey soil of Indian origin, Chem. Eng. J. 165 (2010) 874–882. https://doi.org/10.1016/j.cej.2010.10.048
[66] G. Kiani, M. Dostali, A. Rostami, A.R. Khataee, Adsorption studies on the removal of malachite green from aqueous solutions onto halloysite nanotubes, Appl. Clay Sci. 54 (2011) 34–39. https://doi.org/10.1016/j.clay.2011.07.008
[67] Y.C. Lee, E.J. Kim, J.W. Yang, H.J. Shin Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate, J. Hazard. Mater. 192 (2011) 62–70. https://doi.org/10.1016/j.jhazmat.2011.04.094
[68] A.C. Suwandi, N. Indraswati, S. Ismadji, Adsorption of N-methylated diaminotriphenyl methane dye (malachite green) on natural rarasaponin modified kaolin, Des. Water Treat. 41 (2012) 342–355. https://doi.org/10.1080/19443994.2012.664738
[69] Y.C. Lee, J.Y. Kim, H.J. Shin, Removal of malachite green (MG) from aqueous solutions by adsorption, precipitation, and alkaline fading using talc, Sep. Sci. Technol. 48 (2013) 1093–1101. https://doi.org/10.1080/01496395.2012.723100
[70] S.A. Cardenas, S.L. Cortez, M.C. Mazon J.C.M. Gutierrez, Study of malachite green adsorption by organically modified clay using a batch method, Appl. Surf. Sci. 280 (2013) 74–78. https://doi.org/10.1016/j.apsusc.2013.04.097
[71] L. Zhang, H. Zhang, W. Guo, Y. Tian, Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud, Appl. Clay Sci. 93 (2014) 85–93. https://doi.org/10.1016/j.clay.2014.03.004
[72] N. Jain, M.K. Dwivedi, R. Agarwal, P. Sharma, Removal of malachite green from aqueous solution by zeolite iron oxide magnetic nanocomposite, J. Envi. Sci. Toxicol. Food Technol. 9 (2015) 42-50.
[73] A. Mittal, L. Krishnan, V.K. Gupta, Removal and recovery of malachite green from wastewater using an agricultural waste material, de-oiled soya, Sep. Purif. Technol. 43 (2005) 125–133. https://doi.org/10.1016/j.seppur.2004.10.010
[74] R. Gong, Y. Jin, F. Chen, Enhanced malachite green removal from aqueous solution by citric acid modified rice straw, J. Hazard. Mater. 137 (2006) 865–870. https://doi.org/10.1016/j.jhazmat.2006.03.010
[75] K. Porkodi, K.V. Kumar Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems, J. Hazard. Mater. 143 (2007) 311–327. https://doi.org/10.1016/j.jhazmat.2006.09.029
[76] K.V. Kumar, S. Sivanesan, Isotherms for malachite green onto rubber wood (Heveabrasiliensis) sawdust: comparison of linear and non-linear methods, Dyes Pigm. 72 (2007) 124-129. https://doi.org/10.1016/j.dyepig.2005.07.021
[77] K.V. Kumar, Optimum sorption isotherm by linear and nonlinear methods for malachite green onto lemon peel, Dyes Pigm. 74 (2007) 595–597. https://doi.org/10.1016/j.dyepig.2006.03.026
[78] K.V. Kumar, K. Porkodi, Batch adsorber design for different solution volume/adsorbent mass ratios using the experimental equilibrium data with fixed solution volume/adsorbent mass ratio of malachite green onto orange peel, Dyes Pigm. 74 (2007) 590–594. https://doi.org/10.1016/j.dyepig.2006.03.024
[79] B.H. Hameed, M.I. El. Khaiary, Malachite green adsorption by rattan sawdust: isotherm, kinetic and mechanism modelling, J. Hazard. Mater. 159 (2008) 574–579. https://doi.org/10.1016/j.jhazmat.2008.02.054
[80] B.H. Hameed, M.I. El-Khaiary, Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies, J. Hazard. Mater. 154 (2008) 237–244. https://doi.org/10.1016/j.jhazmat.2007.10.017
[81] Z.O. Bekc, C. Zveri, Y. Seki, K. Yurdakoc, Sorption of malachite green on chitosan bead, J. Hazard. Mater. 154 (2008) 254–261. https://doi.org/10.1016/j.jhazmat.2007.10.021
[82] O. Hamdaoui, M. Chiha, E. Naffrechoux, Ultrasound-assisted removal of malachite green from aqueous solution by dead pine needles, Ultrason Sonochem. 15 (2008) 799–807. https://doi.org/10.1016/j.ultsonch.2008.01.003
[83] S. Boutemedjet, O. Hamdaoui, Sorption of malachite green by eucalyptus bark as a non-conventional low-cost biosorbent, Desalin. Water Treat. 8 (2009) 201–210. https://doi.org/10.5004/dwt.2009.684
[84] R. Ahmad, R. Kumar, Adsorption studies of hazardous malachite green onto treated ginger waste, J. Environ. Manag. 91 (2010) 1032–1038. https://doi.org/10.1016/j.jenvman.2009.12.016
[85] D. Ozdes, A. Gundogdu, C. Duran, H.B. Senturk, Evaluation of adsorption characteristics of malachite green onto Almond Shell (Prunusdulcis), Sep. Sci. Technol. 45 (2010) 2076–2085. https://doi.org/10.1080/01496395.2010.504479
[86] S. Chowdhury, P. Saha, Sea shell powder as a new adsorbent to remove Basic Green 4 (malachite green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies, J. Chem. Eng. 164 (2010) 168–177. https://doi.org/10.1016/j.cej.2010.08.050
[87] A.S. Franca, L.S. Oliveira, S.A. Saldanha, Malachite green adsorption by mango (Mangiferaindica L.) seed husks: Kinetic, equilibrium and thermodynamic studies. Desalin. Water Treat. 19 (2010) 241–248. https://doi.org/10.5004/dwt.2010.1105
[88] S. Chowdhury, R. Mishra, P. Saha, P. Khushwaha, Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk, Desalina. 265 (2011) 159-168. https://doi.org/10.1016/j.desal.2010.07.047
[89] H. Zhang, Y. Tang, X. Liu, Improved adsorptive capacity of pine wood decayed by fungi Poriacocos for removal of malachite green from aqueous solutions. Desalination 274 (2011) 97–104. https://doi.org/10.1016/j.desal.2011.01.077
[90] S. Chowdhury, P.D. Saha, Mechanistic, Kinetic and thermodynamic evaluation of adsorption of hazardous malachite green onto conch shell powder, Sep. Sci. Technol. 46 (2011) 1966–1976. https://doi.org/10.1080/01496395.2011.584930
[91] V. Vijayakumaran, S. Arivoli, Equilibrium and kinetic modeling on the removalof malachite green from aqueous solution using odinawodier bark carbon, J. Mater. Environ. Sci. 3 (2012) 525-536.
[92] A. Jasinska, P. Bernat, K. Paraszkiewicz, Malachite green removal from aqueous solution using the system rapeseed press cake and fungus Myrotheciumroridum, Desalin. Water Treat. 51 (2013) 7663–7671. https://doi.org/10.1080/19443994.2013.779939
[93] A. Witek-Krowiak, Biosorption of malachite green from aqueous solutions by pine sawdust: equilibrium, kinetics and the effect of process parameters, Desal. Water Treat. 51 (2013) 3284–3294. https://doi.org/10.1080/19443994.2012.749053
[94] Uma, Y.C. Sharma, Removal of malachite green from aqueous solutions by adsorption on to timber waste, Inter. J. Envir. Eng. Manag. 4 (2013) 631-638.
[95] H. Wang, X. Yuan, G. Zeng Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent, Environ. Sci. Pollut. Res. Int. 21 (2014) 11552–11564. https://doi.org/10.1007/s11356-014-3025-2
[96] T.A. Khan, R. Rahman, I. Ali Removal of malachite green from aqueous solution using waste pea shells as low-cost adsorbent—adsorption isotherms and dynamics. Toxicol. Environ. Chem. 96 (2014) 569–578. https://doi.org/10.1080/02772248.2014.969268
[97] M.K. Dahri, M.R.R. Kooh, L.B.L.Lim , Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies, J. Environ. Chem. Eng. 2 (2014) 1434–1444. https://doi.org/10.1016/j.jece.2014.07.008
[98] A.K. Kushwaha, N. Gupta, M.C. Chattopadhyaya Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucuscarota. J. Saudi Chem. Soc. 18 (2014) 200–207. https://doi.org/10.1016/j.jscs.2011.06.011
[99] K. Vijayaraghavan, Y. Premkumar, J. Jegan, Malachite green and crystal violet biosorption onto coco-peat: characterization and removal studies, Desal. Water Treat. 57 (2015) 6423–6431. https://doi.org/10.1080/19443994.2015.1011709
[100] H.H. Hammud, A. Shmait, N. Hourani, Removal of malachite green from water using hydrothermally carbonized pine needles, RSC Adv. 5 (2015) 7909–7920. https://doi.org/10.1039/C4RA15505J
[101] Y. Song, S. Ding, S. Chen, H. Xue, Y. Mei, J. Ren, Removal of malachite green in aqueous solution by adsorption on sawdust, Korean J. Chem. Eng. 32 (2015) 2443–2448. https://doi.org/10.1007/s11814-015-0103-1
[102] A. Mittal Adsorption kinetics of removal of a toxic dye, malachite green, from wastewater by using hen feathers, J. Hazard. Mater. 133 (2006) 196–202. https://doi.org/10.1016/j.jhazmat.2005.10.017
[103] X. Rong, F. Qiu, J. Q. Jiao, Y. H. Zhao, D. Yang. Removal of malachite green from the contaminated water using a water-soluble melamine/maleic anhydride sorbent, J. Ind. Eng. Chem. 20 (2007) 3808- 3814. https://doi.org/10.1016/j.jiec.2013.12.083
[104] G. Crini, N.H. Peindy, F. Gimbert, C. Robert, Removal of C.I. Basic Green 4 (malachite green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies, Sep. Purif. Technol. 53 (2007) 97–110. https://doi.org/10.1016/j.seppur.2006.06.018
[105] A. Das, A. Pal, S. Saha, S.K. Maji, Behaviour of fixed-bed column for the adsorption of malachite green on surfactant modified alumina, J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 44 (2009) 265–272. https://doi.org/10.1080/10934520802597929
[106] L. Ai, H. Huang, Z. Chen, Activated carbon/CoFe2O4 composites: facile synthesis, magnetic performance and their potential application for the removal of malachite green from water, Chem. Eng. J. 156 (2010) 243–249. https://doi.org/10.1016/j.cej.2009.08.028
[107] S. Chowdhury, P.D. Saha, Fixed-bed adsorption of malachite green onto binary solid mixture of adsorbents: seashells and eggshells, Toxicol. Environ. Chem. 94 (2012) 1272–1282. https://doi.org/10.1080/02772248.2012.703205
[108] S. Chowdhury, P.D. Saha, U. Ghosh, Fish (Labeorohita) scales as potential low-cost biosorbent for removal of malachite green from aqueous solutions, Bioremediat. J. 16 (2012) 235–242. https://doi.org/10.1080/10889868.2012.731444
[109] R. Xu, M. Jia, Y. Zhang, F. Li, Sorption of malachite green on vinyl-modified mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes, Microporous Mesoporous Mater. 149 (2012) 111–118. https://doi.org/10.1016/j.micromeso.2011.08.024
[110] M. Shirmardi, A.H. Mahvi, B. Hashemzadeh, The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes, Korean J. Chem. Eng. 30 (2013) 1603–1608. https://doi.org/10.1007/s11814-013-0080-1
[111] A. Mohammadi, H. Daemi, M. Barikani, Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles, Int. J. Biol. Macromol. 69 (2014) 447–455. https://doi.org/10.1016/j.ijbiomac.2014.05.042
[112] A.K. Sarkar, A. Pal, S. Ghorai, N.R. Mandre, S. Pal, Efficioent removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly( acrylic acid), Carbohydr. Polym. 111 (2014) 108-115. https://doi.org/10.1016/j.carbpol.2014.04.042
[113] M. Ghaedi, N. Mosallanejad, Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon, J. Ind. Eng. Chem. 20 (2014) 1085–1096. https://doi.org/10.1016/j.jiec.2013.06.046
[114] M. Ghaedi, E. Shojaeipour, A.M. Ghaedi, R. Sahraei, Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization, Spectrochim. Acta A, Mol. Biomol. Spectrosc. 142 (2015) 135–149. https://doi.org/10.1016/j.saa.2015.01.086
[115] D. Wang, L. Liu, X. Jiang, Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids Surf. Physicochem. Eng. Asp. 466 (2015) 166–173. https://doi.org/10.1016/j.colsurfa.2014.11.021
[116] F.N. Azad, M. Ghaedi, K. Dashtian, S. Hajati, A. Goudarzi,, M. Jamshidi, Enhanced simultaneous removal of malachite green and safraninby ZnO nanorod-loaded activated carbon: modeling, optimization and adsorption isotherms, New J. Chem. 39 (2015) 7998-8005. https://doi.org/10.1039/C5NJ01281C