Soft Ferrite: A Brief Review on Structural, Magnetic Behavior of Nanosize Spinel Ferrites


Soft Ferrite: A Brief Review on Structural, Magnetic Behavior of Nanosize Spinel Ferrites

N.N. Sarkar, K.G. Rewatkar, V.M. Nanoti, N.T. Tayade

In the present work, we have focused on crystal structure, magnetic properties, M-H curve, superparamagnetic behavior and magneto-crystalline anisotropy of soft ferrimagnetic oxides having spinel structure. Due to their unique magnetic properties such as high Curie temperature and high saturation magnetization, spinel ferrites offer opportunities for applications in different fields such as hyperthermia, targeted drug delivery, magnetic resonance, microstrip antenna. Various applications of these ferrites have been discussed and explored due to possibility nano-size material synthesis.

Soft Ferrite, Spinel Structure, XRD, Magnetocrystalline Anisotropy, Biomedical Application

Published online 4/20/2018, 24 pages


Part of the book on Magnetic Oxides and Composites

[1] H. S. Ahamad, N.S. Meshram, S. B. Bankar, S. J. Dhoble, K.G. Rewatkar, Structural properties of CuxNi1-xFeO4 nano ferrites prepared by urea gel microwave auto combustion method, Ferroelectrics, 516 (2017) 167–173.
[2] S. N. Sable, K. G. Rewatkar, V. M. Nanoti, Structural and magnetic behavioral improvisation of nanocalcium hexaferrites, Materials Science and Engineering B, 168 (2010) 156–160.
[3] C. Mamatha, M. Krishnaiah, C. S. Prakash, K. G. Rewatkar, Structural and electrical properties of aluminium substituted nano calcium ferrites, Procedia Materials Science, 5 (2014) 780–786.
[4] R. J. Hill, J. R. Craig, G.V. Gibbs, Systematics of the spinel structure type, International Journal of Physics and Chemistry Minerals, 4 (1979) 317-339.
[5] A. D. Deshpande, K. G. Rewatkar, V. M. Nanoti, Study of morphology and magnetic properties of nanosized particles of zirconium – cobalt substituted calcium hexaferrites, Materials Today: Proceedings, 4 (2017) 12174–12179.
[6] J. N. Christy, K. G. Rewatkar, and P. S. Sawadh, Structural and magnetic behavior of M-type Co-Zr substituted calcium hexaferrites, Materials Today: Proceedings, 4 (2017) 11857–11865.
[7] B. Lavina, G. Salviulo, A. D. Giusta, Cation distribution and structure modelling of spinel solid solutions, Physics and Chemisty of Minerals, 29 (2002) 110–18.
[8] L. Kumar, M. Kar, Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite, Journal of Magnetism and Magnetic Materials, 323 (2011) 2042–2048.
[9] G.D. Tang, Q.J. Han, J. Xu, D.H. Ji, Investigation of magnetic ordering and cation distribution in the spinel ferrites CrxFe3−xO4 (0.0 ≤ x ≤ 1.0), Physica B: Condensed Matter, 438 (2014) 91–96.
[10] A. N. Birgani, M. Niyaifar, A. Hasanpour, Study of cation distribution of spinel zinc nano ferrite by X-ray, Journal of Magnetism and Magnetic Materials, 374 (2015) 179–181.
[11] R.C. Kambale, N.R. Adhate, B. K. Chougule, Y. D. Kolekar, Magnetic and dielectric properties of mixed spinel Ni–Zn ferrite synthesized by citratenitrate combustion method, Journal of Alloys and Compounds, 491 (2010) 372–377.
[12] K. Sabri, A. Rais, K. Taibi, M. Moreau, B. Ouddane, A. Addou, Structural rietveld refinement and vibrational study of MgCrxFe2-xO4, Physica B: Physics of Condensed Matter, 501 (2016) 38–44.
[13] H. M. Widatallaha, C. Johnsonb, F. J. Berryb, A. M. Gismelseed, Synthesis and cation distribution of copper–substituted spinel-related lithium ferrite, Journal of Physics and Chemistry of Solids, 67 (2006) 1817–1822.
[14] V.M. Nanoti, D.K. Kulkarni, Structural, electrical and magnetic study of the Zn0.5Ni0.5FexCr2− xO4, Journal of Materials Science Letters, 15 (1996) 636–638.
[15] L. L. Lang, J. Xu, Z. Z. Li, G. D. Tang, Study of the magnetic structure and the cation distributions in MnCo, Physica B: Physics of Condensed Matter, 462 (2015) 47–53.
[16] P. Jadhav,K.Patankar, V. Mathe, N.L.Tarwal, Structural and magnetic properties of Ni0.8Co0.2−2xCuxMnxFe2O4 spinel ferrites prepared via solution combustion route, Journal of Magnetism and Magnetic Materials, 385 (2015) 160–165.
[17] B. P. Jacob, A. Kumar, R. P. Pant, S. Singh, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles, Bulletin of Material Science, 34 (2011) 1345–1350.
[18] J. P. Singh, G. Dixit, R.C. Srivastav, H. Kumara, Magnetic resonance in superparamagnetic zinc ferrite, Bulletin of Material Science, 36 (2013) 751–754.
[19] X. Li, G. Wang, Low temperature synthesis and growth of superparamagnetic Zn0.5Ni0.5Fe2O4 nanosizedparticles, Journal of Magnetism and Magnetic Materials, (2009) 1276–128.
[20] M. Gharibshahiana, M.S.Nourbakhsha, Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified pechini method, Journal of Magnetism and Magnetic Materials, 425 (2017) 48–56.
[21] M.G. Naseri, M. Aara, E.B. Saion, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple thermal treatment method, Journal of Magnetism and Magnetic Materials, 350 (2014) 141–147.
[22] I. J. Bruvera, P. M. Zelis, M. P. Calatayud, G. F. Goya, F. H. Sanchez, Determination of the blocking temperature of magnetic nanoparticles, Journal of Applied Physics, 118 (2015) 184–304.
[24] Y. Tang, R. C. Flesch, T. Jin, A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe–Cr–Nb–B alloy in the presence of blood vessels, Journal of Magnetism and Magnetic Materials,432 (2017) 330–335.
[25] Z. Abdel–Hamid, M. M. Rashad, S. M. Mahmoud, and A. T. Kandil, Electrochemical hydroxyapatite cobalt ferrite nanocomposite coatings as well hyperthermia treatment of cancer, Material Science and Engineering, 76 (2017) 827–838.
[26] R. Colognato, A. Bonelli, D. Bonacchi, G. Baldi, L. Migliore, Analysis of cobalt ferrite nanoparticles induced genome, Journak of Nanotoxicology 1 (2007) 301–308.
[27] M. Coisson, G. Barrera, F. Celegato, L. Martino, S. N. Kane, S. Raghuvanshi, F. Vinai, P. Tiberto, Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications, Biochimica et Biophysica Acta (BBA), 1861 (2017) 1545–1558.
[28] K. He, Y. Ma, B. Yang, C. Liang, X. Chen, C. Cai, The efficacy assessments of alkylating drugs induced by nano-Fe3O4/CA for curing breast and hepatic cancer, Spectrochimica Acta Part A: Molecular Spectroscopy, 173 (2017) 82–86.
[29] S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science, Journal of Material Science and Engineering, 33 (2013) 1–8.
[30] N. N. Sarkar, N. S. Meshram, A. P. Bhat, K. G. Rewatkar, V. M. Nanoti, A review of nanoferrites: synthesis and application in hyperthermia, International Journal of Advanced Scientific and Technical Research, 5 (2015) 69–75.
[31] I. S. Oliveira, A. P. Guimafftes, A model for domain and domain wall NMR signals in magnetic materials, Journal of Magnetism and Magnetic Materials, 170 (1997) 277–284.
[32] N. Singh, A. Agarwal, Effect of magnesium substitution on dielectric and magnetic properties of Ni Zn ferrite, Physica B Condensed Matter, 406 (2011) 687–692.
[33] A. Ghasemi, Compositional dependence of magnetization reversal mechanism, magnetic interaction and Curie temperature of Co1−xSrxFe2O4 spinel thin film, Journal of Alloys and Compounds, 645 (2015) 467–477.
[34] A. J. Rondinone, A. C. Samia, Z. J. Zhang, Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites, Journal of Physical Chemistry B, 103 (1999) 6876–6880.
[35] V. Babayan, N.E. Kazantseva, Combined effect of demagnetizing field and induced magnetic anisotropy, Journal of Magnetism and Magnetic Materials, 324 (2012) 161–172.
[36] L. Peleck, L. Diandra, Magnetic properties of nanostructured materials,Chemistry of Materials, 8 (1996) 1770–1783.
[37] L.G. Antoshina, A.N. Goryaga, A.I. Kokorev, Magnetic anisotropy in ferrites spinels with frustrated magnetic structure, Journal of Magnetism and Magnetic Materials, 258 (2003) 516–519.
[38] W. W. Porterfield, Inorganic chemistry, Academic Press, 2013
[39] S. Bae, Miniaturized broadband ferrite t–dmb antenna for mobile phone applications, IEEE Transactions on Magnetics, 46 (2010) 2361–2364.
[40] H.V. Jamadar, M.B. Shelar, M.R. Bhandare, A.M. Shaikh, B. K. Chougule, Magnetic properties of nanocrystalline nickel zinc ferrites prepared by combustion synthesis, International Journal of Self Propagating High Temperature Synthesis, 20 (2011) 118–123.
[41] T. Nakamura, Low-temperature sintering of Ni–Zn–Cu ferrite and its permeability spectra, Journal of Magnetism and Magnetic Materials, 168 (1997) 285–291.
[42] J. Y. Hsu, W. S. Ko, H. D. Shen, C. J. Chen, Low temperature fired Ni–Cu–Zn ferrite, IEEE Transactions on Magnetics, 30 (1994) 4875–4877.
[43] K. Padmanabhan, Electronic components. Firewall Media, 2006.
[44] W. Hu, N. Qin, G. Wu, Y. Lin, S. Li, D. Bao, Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances,Journal of the American Chemical Society, 134 (2012) 14658–14661.
[45] M. Wu, A. Hoffmann,E. Robert, C. Robert, L. Stamps, Recent Advances in Magnetic Insulators–From Spintronics to Microwave Applications, first ed., Academic Press, 64 (2013).
[46] R. Valenzuela, Novel applications of ferrites, Physics Research International, 2012 (2011) 1–9.
[47] A. Verma, M.I. Alam, R. Chatterjee, T.C. Goel, R. G. Mendiratta, Development of a new soft ferrite core for power applications, Journal of Magnetism and Magnetic Materials, 300 (2006) 500–505.
[48] A. R. West, Solid state chemistry and its applications, Second edition, Wiley, 2014.
[49] S. Venkateswarlu, Y. S. Rao, T. Balaji, B. Prathima, Biogenicsyn thesis of Fe3O4 magnetic nanoparticles using plantain peel extract, Journal of Materials Letters, 100 (2013) 241–244.
[50] M. Ravichandran, G. Oza, S. Velumani, Onedimensional ordered growth of magnetocrystalline, Journal of Materials Letters, 135 (2014) 67–70.
[51] K. Iwahori, J. Watanabe, Y. Tani, H. Seyama, N. Miyata, Removal of heavy metal cations by biogenic magnetite nanoparticles produced, Journal of Bioscience and Bioengineering, 117 (2014) 333–335.
[52] E.C. Sadasiv, T.T. Yeh, P.W. Chang, Protein pI alteration related to strain variation of infectious bronchitis virus, an avian Coronavirus, Journal of Virological Methods, 33 (1991) 115–125.
[53] A. Jorda, R. Scholz, K. M. Hauff, Presentation of a new magnetic field therapy system, Journal of Magnetism and Magnetic Materials, 225 (2001) 118–126.
[54] A. Hooda, S. Sanghi, A. Agarwal, R. Dahiya, Crystal structure refinement, dielectric and magnetic properties of Ca/Pb substituted SrFe12O19 hexaferrites, Journal of Magnetism and Magnetic Materials, 387 (2015) 46–52.
[55] C. M. Ahameda, M. J. Akhtar, H. A. Alhadlaqa, A. Alshamsan, Copper ferrite nanoparticle induced cytotoxicity and oxidative stressin human breast cancer, Colloids and Surfaces B: Biointerfaces, 142 (2016) 46–54.
[56] K. Kobayashi, S. Sagae, T. Takeda, M. Sugimura, Y. Nishioka, Genetic analysis of familial and multiple malignancies, International Journal of Gynecology and Obstetrics, 66 (1999) 149–153.
[57] A. Cvetanovic, J. S. Gajic, P. Maskovic, S. Savic, Antioxidant and biological activity of chamomile extracts obtained by different techniques perspective of using superheated water forisolation of biologically active compounds, Industrial Crops and Products, 65 (2015) 582–591.