Structural, Magnetic and Dielectric Properties of Aluminum Cobalt Substituted M-type Strontium Hexaferrites


Structural, Magnetic and Dielectric Properties of Aluminum Cobalt Substituted M-type Strontium Hexaferrites

C.C. Chauhan, R.B. Jotania, C.S. Sandhu

SrCoxAlxFe(12-2x)O19 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) hexaferrites have been synthesized using a simple heat treatment method and characterized using various instrumental techniques such as FTIR, XRD, SEM, VSM and dielectric measurements. The XRD analysis reveals the formation of mixed phases of M-type hexaferrite and α-Fe2O3. The crystallite size is found in the range of 24-46 nm. The micrographs of typical samples show porous and agglomerated grains. The values of Ms, Mr, Hc decreased with the increase of Co–Al content. The values of the dielectric constant, tangent loss, AC conductivity and dielectric modulus were studied as a function of frequency.

Strontium Hexaferrite, XRD, Saturation Magnetization, Coercivity, Dielectric Loss Tangent

Published online 4/20/2018, 21 pages


Part of the book on Magnetic Oxides and Composites

[1] R. C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science, 57 (2012) 1191-1334.
[2] S. R. Shinde, S. E. Loland, C. S. Ganpule, S. M. Bhagat, S. B. Bhagat, S. B. Ogle, R. Ramesh, T. Venkatesan, Improvement in spin-wave resonance characteristics of epitaxial barium-ferrite thin films by using an aluminium doped strontium-ferrite buffer layer, Applied Physics Letters, 74 (4) (1999) 594-596.
[3] N. Chen, K. Yang, M. Y. Gu, Microwave absorption properties of La substituted M-type strontium ferrites, Journal of Alloys and Compounds, 490 (2010) 609-612.
[4] J. Dho, E. K. Lee, J. Y. Park, N. H. Hur, Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19, Journal of Magnetism and Magnetic Materials 285(1-2) (2005) 164-168.
[5] B. K. Rai, S. R.Mishra, V. V. Nguyen, J. P. Liu, Synthesis and characterization of high coercivity rare-earth doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm,and Gd), Journal of Alloys and Compounds,550 (2013) 198-203.
[6] Y. Xu, G. L. Yang, A. P. Chu, H.R. Zhai, Theory of the single ion magnetocrystalline anisotropy of 3d ions, Physica Status Solidi B, 157 (1990) 685-693.
[7] C. A. Van Den Brock, A. L. Stuijts, Ferroxdure, Philips Technical Review, 37(7) (1977) 157-175.
[8] O. Kubo, T. Ido, H. Yok, Properties of Ba ferrite particles for perpendicular magnetic recording media, IEEE Transactions on Magnetics, 18(6) (1982) 1122-1124.
[9] S. Hussain, N. Abbas Shah, A. Maqsood, A. Ali, M. Naseemand W. Ahmad Adil Syed, Characterization of Pb doped Sr ferrites at room temperature, Journal of Super Conductivity and Novel Magnetism, 24 (2011)1245-1248.
[10] W. Zhong, W. P. Ding, N. Zhang, Key Step in the synthesis of ultrafine BaFe12O19 by sol-gel synthesis, Journal of Magnetism and Magnetic Materials, 168(1-2) (1997) 196-202.
[11] A. Drmota, M. Drofenik, A. Znidarsic, Synthesis and characterization of nano-crystalline strontium hexaferrite using the coprecipitation and microemulsion methods with nitrate precursors, Ceramics International, 38 (2012) 973-979.
[12] W. Onreabroy, K. Papato, G. Rujijanagul, K. Pengpat, T. Tunkasiri, Study of strontium ferrites substituted by lanthanum on the structural and magnetic properties, Ceramics International, 38S (2012) S415-S419.
[13] R. Martinez Garcia, V. Bilovol, L. M. Socolovsky, Effect of the heat treatment conditions on the synthesis of Sr-hexaferrite, Physica B: Condensed Matter, 407 (16) (2011) 3109-3112.
[14] Z. Ullah, S. Atiq, S. Naseem, Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites, Journal of Alloys and Compounds, 555 (2013) 263-267.
[15] S. Ounnunkada, P. Winotai, Properties of Cr-substituted M-type barium ferrites prepared by nitrate-citrate gel-autocombustion process, Journal of Magnetism and Magnetic Materials, 301 (2007) 292-300.
[16] L. Q. You, J. Zheng, The magnetic properties of strontium hexaferrite with La-Cu substitution prepared by SHS method, Journal of Magnetism and Magnetic Materials, 318 (2007) 74-78
[17] Vinod Dhage, M. I. Mane, A. P. Keche, C. T. Birajdar, K. M. Jadhav, The structural and magnetic behaviorofaluminum doped barium hexaferrite nanoparticles synthesized by solution combustion technique, Physica B: Condensed Matter, 406(4) (2011) 789-793.
[18] M. R. Eraky, A. A. Beslepkin, S. P. Kuntsevich, Magnetic properties and NMR studies of the SrAl-M hexagonal ferrite system, Materials Letters, 57(2003) 3427-3430.
[19] J. N. Dahal, L. Wang, S. R. Mishra, V.V. Nguyen, and J.P. Liu, Synthesis and magnetic properties of SrFe12-x-yAlxCoyO19 nanocomposites prepared via autocombustion technique, Journal of Alloys and Compounds 595 (2014) 213-220.
[20] Jasbir Singh, Charanjeet Singh, Dalveer Kaur, S. Bindra Narang, Rajat Joshi, Sanjay R. Mishra, Rajshree Jotania, Madhav Ghimire, Chetna C. Chauhan, Tunable microwave absorption in Co-Al substituted M-type Ba-Sr hexagonal ferrite, Materials and Design, 110 (2016) 749-761.
[21] H. Luo, B. K. Rai, S. R. Mishra, V. V. Nguyen, J.P. Liu, Physical and Magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route, Journal of Magnetism and Magnetic Materials, 324 (17) (2012) 2602-2608.
[22] P. Priyadharsini, A. Pradeep, P. Sambasiva Rao, G. Chandrasekaran, Structural, spectroscopic and magnetic studies of nanocrystalline Ni–Zn ferrites, Materials Chemistry and Physics, 116 (2009) 207-213.
[23] D. A. Skoog, Principles of Instrumental Analysis, Saunders Golden Sunburst Series, 1985.
[24] S. K. Chawla, R. K. Mudsainiyan, S. S. Meena, S. M.Yusuf, Sol-gel synthesis, structuraland magnetic properties of nanoscale M-type barium hexaferrite BaCoxZrxFe(12-2x)O19, Journal of Magnetism and Magnetic Materials, 350 (2014 ) 23-29.
[25] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd Edition, Wiley, Wiley, New York, 1976, pp. 25-87.
[26] A. Baniasadi, A. Hashemi, A. Nemati, M. A. Ghadikolaei and E. Paimozd, Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting, Journal of Alloys and Compounds, 583 (2014) 325-328.
[27] D. Ramimoghadam, S. Bagheri, S. B. A. Hamid, Stale mono-disperse nanomagnetic colloidal suspensions: an overview, Colloids and Surfaces B: Biointerfaces, 133 (2015) 388-411.
[28] Vivek Dixit, Chandani N. Nandadasa, Seong-Gon Kim, Sungho Kim, Jihoon Park, Yang-Ki Hong, Laalitha S. I. Liyanage, Amitava Moitra, Site occupancy and magnetic properties of Al-substituted M-type strontium hexaferrite, Journal of Applied Physics, 117 (2015) 243904-243917
[29] D.G. Agresti, T.D. Shelfer, Y. K. Hong, Y. J. Paig, A Mӧssbauer study of CoMo-substituted barium ferrite, IEEE Transactions Magnetics, 34 (4) (1989) 4069-4071.
[30] C. Singh, S. B. Narang, I. S. Huduara, Y. Bai, C. Singh, S. B. Narang, I. S. Huduara, Y. Bai, Dielectric properties of lanthanum substituted barium titanate microwave ceramics, Journal of Alloys and Compounds, 464 (1) (2008) 429-433.
[31] I. Ali, M. Islam, M. N. Ashiq, M. A. Iqbal, M. Awan, S. Naseem, Role of Tb–Mn substitution on the magnetic properties of Y-type hexaferrite, Journal of Alloys and Compounds, 599 (2014) 131-138.
[32] Y. Li, R. Liu, Z. Zhang, C. Xiong, Synthesis and characterization of nanocrystalline BaFe9.6Co0.8Ti0.8M0.8O19 particles, Materials Chemistry and Physics, 64 (2000) 256-259.
[33] A Kumar, Annveer, M. Arora, M. S. Yadav, R. P. Panta, Induced Size Effect on Ni Doped Nickel Zinc Ferrite Nanoparticles, Physics Procedia, 9 (2010) 20-23.
[34] L. Shrideshmukh, K. K. Kumar, S. B. Laxman, A. R. Krishna, G. Sathaiah, Dielectric Properties and Electrical Conduction in Yttrium Iron Garnet (YIG), Bulletin of Materials Science, 21(3) (1998) 219-226.
[35] C. G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Physical Review, 83 (1951) 121-124.
[36] P. Kuruva, P. Reddy Matli, B. Mohammad, S. Reddigari, S. Katlakunta, Effect of Ni-Zr co-doping on dielectric and magnetic properties of SrFe12O19 via sol-gel route, Journal of Magnetism and Magnetic Materials, 382 (2015) 172-178.
[37] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nded., John Wiley & Sons, New York, 1976.
[38] V.R. K. Murthy, J. Sobhanadri, Dielectric properties of some nickel-zinc ferrites at radio frequency, Physica Status Solidi A, 36(2) (1976) K133-K135.
[39] R. Pandit, K.K. Sharma, P. Kaur, R.K. Kotnala, J. Shah, R. Kumar, Effect of Al3+ substitution on structural, cation distribution, electrical and magnetic properties of CoFe2O4, Journal of Physics and Chemistry of Solids, 75 (2014) 558-569.
[40] B.V. R. Chowdari, R.G. Krishnan, AC conductivity analysis of glassy silver iodomolybdate system, Solid State Ionics 23 (1987) 225–233.
[41] M. Irfan, A. Elahi, A Shakoor, Hysteresis and Electric modulus analysis of Y3+ doped MnNi –Y –type hexagonal ferrite,Ceramics Silikaty, 60(1) (2016) 34-40.
[42] S. M. Patange, S. E. Shirsath, K. S. Lohar, S. S. Jadhav, N. Kulkarni, K. M. Jadhav, Electrical and switching properties of NiAlxFe2−xO4 ferrites synthesized by a chemical method, Physica B: Condensed Matter, 406(3) (2011) 663-668.
[43] Yang. Bai, Ji. Zhou, Zhilun. Gui, Longtu. Li, Phase transformation, structure and magnetic properties of (Nd, Pr)–Fe–V–B alloys and their nitrides prepared by mechanical alloying, Journal of Magnetism and Magnetic Materials, 278 (2004) 208-213.
[44] M. G. Chourashiya, J. Y. Patil, S. H. Pawar, L. D. Jadhav, Studies on structural, morphological and electrical properties of Ce1− xGdxO2−(x/2), Materials Chemistry and Physics, 109 (2008) 39-44.
[45] O. Raymond, R. Font, J. Portelles, N. Suarez-Almodovar, J. M. Siqueiros, Frequency temperature response of ferroelectromagnetic Pb(Fe1/2Nb1/2)O3 ceramics obtained by different precursors, Journal of Applied Physics, 99 (2006) 124101(1)-124101(9).