Influence of an Anionic Surfactant Addition on the Structural, Microstructural, Magnetic and Dielectric Properties of Strontium-Copper Hexaferrites

$20.00

Influence of an Anionic Surfactant Addition on the Structural, Microstructural, Magnetic and Dielectric Properties of Strontium-Copper Hexaferrites

R.A. Nandotaria, R.B. Jotania, C.S. Sandhu, S.E. Shirsath, K.M. Batoo

The influence of surfactant addition (SDS 1g, 2g, 3g) on structural, microstructural, magnetic and dielectric properties of Sr2Cu2Fe12O22 hexaferrites, prepared using a coprecipitation method was investigated. XRD analysis show presence of M, Y and α-Fe2O3 phases. SEM micrograph of pure sample shows agglomerated spongy grains; while the SDS-1g sample shows plate like hexagonal structure. TEM confirms the formation of nano-particles. The Ms falls from 45 to 31.47 emu/g, while Hc was found to increase from 75 to 500 Oe but Mr/Ms < 0.5. The dielectric properties show normal behavior with respect to frequency. Keywords
Hexaferrite, XRD, SEM, TEM, Dielectric Properties

Published online 4/20/2018, 22 pages

DOI: http://dx.doi.org/10.21741/9781945291692-6

Part of the book on Magnetic Oxides and Composites

References
[1] Z.H. Yang, Z.W. Li, L. Liu, L.B. Kong. Enhanced microwave magnetic and attenuation properties of composites with freestanding spinel ferrite thick films as fillers, Journal of Magnetism and Magnetic Materials, 324 (19) (2012) 3144-3148.
[2] R.S. Alam, M. Moradi, M. Rosta, L. Y. Bai. Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method, Journal of Magnetism and Magnetic Materials, 381 (2015) 1-9.
[3] A. Ohlan, K.Singh, A.Chandra, S.K.Dhawan, Microwave absorption behavior of core shell structured poly (4-ethylenedioxy Thiophene) barium ferrite nanocomposites, ACS Applied Materials and Interfaces, 2 (3) (2010) 927-933.
[4] K. Kamishima, N. Hosaka, K. Kakizaki, N. Hiratsuka, Crystallographic and magnetic properties of Cu2X, Co2X, and Ni2X hexaferrites, Journal of Applied Physics, 109 (1) (2011) 013904-5.
[5] Z. Zhang, X. Liu, X.Wang, Y. Wu, R. Li, Effect of Nd-Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexaferrites, Journal of Alloys and Compounds, 525 (2012) 114-119.
[6] Z. F. Zi, Y. P. Sun, X. B. Zhu, Z. R. Yang, J. M. Dai, W. H. Song, Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method, Journal of Magnetism and Magnetic Materials, 320 (21) (2008) 2746-2751.
[7] P.B. Braune, The crystal structures of a new group of ferromagnetic compounds, Philips research reports,12 (1957) 491-548.
[8] K. Taniguchi, N. Abel, S. Ohtani, H. Umetsul and T. Arima, Ferroelectric polarization reversal by a magnetic field in multiferroic Y-type hexaferrite Ba2Mg2Fe12O22,Applied Physics Express, 1 (2008) 031301-3.
[9] J. L. Snoek, Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s Physica, 14 (4) (1948) 207-217.
[10] J. Smit, H P J Wijn, Ferrites, Cleaver-Hume Press, London, UK, (1959).
[11] R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science, 57 (2012) 1191-1334.
[12] R. B. Jotania, H. S. Virk, Y-Type hexaferrites: structural, dielectric and magnetic properties, Solid State Phenomena, 189 (2012) 209-232.
[13] L. Bolin Hu, Zhaohui Chen, Zhijuan Su, Xian Wang, Andrew Daigle, Parisa Andalib, Jason Wolf, Michael E. McHenry, Yajie Chen and Vincent G. HarrisNanoscale-driven crystal growth of hexaferrite heterostructures for magnetoelectric tuning of microwave semiconductor integrated devices, ACS Nano, 8 (11) (2014) 11172–11180
[14] R.C. Pullar, M.D. Taylor, A. K. Bhattacharya, Novel aqueous sol–gel preparation and characterization of barium M ferrite, BaFe12O19 fibers, Journal of Materials Science, 32 (1997) 349-352.
[15] A. Morel, J. M. LeBreton, J. Kreisel, G. Wiesinger, F. Kools and P. Tenaud, Sublattice occupation in Sr1-yLaxFe12-yCoO19 hexagonal ferrite analyzed by Mossbauer and Raman spectroscopy, Journal of Magnetism and Magnetic Materials. 1405 (2002) 242-245.
[16] Y. Bai, J. Zhou, Z. Gui and L. Li, Magnetic properties of non-stoichiometric Y-type hexaferrite, Journal of Magnetism and Magnetic Materials. 250 (2002) 364-369.
[17] M. Obol, X. Zuo and C. Vittoria, Oriented Y-type hexaferrites for ferrite device, Journal of Applied Physics, 91 (2006) 7616-7618.
[18] J.C. Maxwell, Electricity and Magnetism, Oxford University Press, New York, (1954) 328.
[19] J. J. Went, G.W Rathenau, E.W Gorter, G.W Oosterhout, Hexagonal iron oxide compounds permanent-magnet materials, Philips technical review, 13(1952) 194-208.
[20] W. D Kingery, H.K Bowen, D.R Uhlmann, Introduction to Ceramics, second ed, Wiley, New York, 1976.
[21] A. R. West, Solid State Chemistry and its applications, John Wiley & Sons, New York, 1984.
[22] W.H. Bragg, W. L. Bragg, The reflection of X-rays by crystals, Proceedings of the Royal Society of London. Series A, 88 (605) (1913) 428-438.
[23] B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing company, Printed at USA, 1956.
[24] U. A. Barkat, S. Ahmed, Y. Huang, Catalytic decomposition of N2O on cobalt substituted barium hexaferrites, Chinese Journal of Catalysis, 34 (7) (2013) 1357-1362.
[25] S. Bierlich, J. Töpfer, Zn-and Cu-substituted Co2Y hexagonal ferrites: Sintering behavior and permeability, Journal of Magnetism and Magnetic Materials, 324 (10) (2012) 1804-1808
[26] T. Koutzarova, S. Kolev, I. Nedkov, K. Krezhov, D. Kovacheva, B. Blagoev, C. Ghelev, C. Henrist, R. Cloots, A. Zaleski, Magnetic properties of nanosized Ba2Mg2Fe12O22powders obtained by auto-combustion, Journal of superconductivity and novel magnetism, 25 (8) (2012) 2631-2635.
[27] M. Costa, .P. Júnior, A. Sombra, Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite (Ba2Co2Fe12O22 (Co2Y)), Materials Chemistry and Physics, 123 (1) (2010) 35-39.
[28] Sami H. Mahmood, Muna D. Zaqsaw,Osama E. Mohsen, Ahmad Awadallah, Ibrahim Bsoul, Mufeed Awawdeh, Qassem I. Mohaidat, Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions, Solid State Phenomena, 241 (2016) 93-125
[29] K Nejati, R Zabihi, Preparation and magnetic properties of nanosize Nickel ferrite particles using hydrothermal method, Chemistry Central Journal, 6 (2012) 23-29.
[30] K. K. Patankar, S.S. Joshi, B. K. Chougule, Dielectric behaviour in magmetoelectric composites, Physics Letters A, 346 (2005) 337-341.
[31] A. A. Birajdar, S. E. Shirsath, R. H. Kadam, S. M. Patange, D. R. Mane, A. R. Shitre, Frequency and temperature dependent electrical properties of Ni0.7Zn0.3CrxFe2xO4, Ceramic International, 38 (2012) 2963-2970.
[32] I .G. Austin, N. F. Mott, Polarans in crystalline and noncrystalline materials, Advances in Physics, 18 (1969) 41-102.
[33] M. Hanesch, H. Stanjek, N. Petersen, Thermogravimatric measurements of soil iron minerals: the role of organic carbon, Geophysical Journal, 165(1) (2006) 53-61.
[34] R.S. Di Pietro, H.G. Johnson, S. P. Bennett, T. J. Nummy, L. H. Lewis, D. Heiman, Determining magnetic nanoparticle size distributions from thermomagnetic measurements, Applied Physics Letter, 96 (22) (2010) 222506 (1-4).
[35] R. A. Nandotaria, C. C. Chauhan, R. B. Jotania, Effect of non-ionic surfactant concentration on microstructure, magnetic and dielectric properties of strontium copper hexaferrite powder, Solid State Phenomena, 232 (2015) 93-110.
[36] Reshma A. Nandotaria, Ph. D. thesis, Department of Physics, Gujarat University, 2015.
[37] T.O. Kim, S. J. Kim, P. Grohs, D. Bonnenberg, K.A. Hempel, Ferrites, proc ICF6, Tokyo and Kyoto, (1992) 75.
[38] M. Yamaura, R.L. Camilo, L.C. Sampaio, M. A. Macedo, M. Nakamura, H. E. Toma, Preparation and characterization of triethoxysilane-coated magnetite nanoparticles, Journal of Magnetism and Magnetic Materials, 279 (2004) 210-217.
[39] S. Tumanski, Handbook of magnetic measurements. Boca Raton, 2011.
[40] R. A. Nandotaria, R. B. Jotania, A solvent free synthesis and characterization of Y-type hexaferrite particles in presence of a cationic surfactant, Journal of International Academy of Physical Sciences, 17 (2013) 81-86.
[41] E. Melagriyappa, H.S. Jayanna, B.K. Chougule, Dielectric behavior and ac electrical conductivity study of Sm3+ substituted Mg–Zn ferrites, Materials Chemistry and Physics,112 (2008) 68-73.
[42] Q. A. M.bo El Ata, M. K. Elimr, S. M. Attia, D. El Kony, A. Al-Hammadi, Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites, Journal of Magnetism and Magnetic Materials, 297 (2006) 33-43.
[43] L.T. Rabinkin, Z.I. Novikova, Ferrites, Minsk: Influence of Cr3+ ion on the dielectric properties of nano crystalline Mg-ferrites synthesized by citrate-gel method. Akademii Nauk, USSR, 12 (1960) 146.
[44] K.W. Wagner, The distribution of relaxation times in typical dielectrics, American Journal of Physics, 40 (1973) 817-819
[45] C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies, Physical Review A, 83 (1951) 121-124.
[46] K.M. Batoo, S. Kumar, Synthesisation, electrical and magnetic properties of Al doped nano ferrite particles, International Journal of Nanoparticles, 2 (2009) 416-422.