Photocatalytic Decomposition of Organic Dyes

$20.00

Photocatalytic Decomposition of Organic Dyes

Zubera Naseem, Haq Nawaz Bhatti, Munawar Iqbal

Effluent detoxification and degradation kinetic of Acid Yellow 216 were investigated using Fenton and photo-Fenton processes. pH, contact time, Fe+2 concentration, H2O2 concentration, dye initial concentration, and temperature were optimized. The decolorization (87%) was considerably higher under experimental conditions of 20 min irradiation, pH 3, 50 mg/L initial dye concentration, 1.5 mM Fe+2, 5 mM H2O2 and 40ºC temperature. However, in the photo-Fenton process dye degradation was achieved up to 98%. Among, first-order, second-order and Behnajady–Modirshahla–Ghanbery (BMG) kinetic models, BMG kinetic model fitted well to experimental data. Under optimized conditions, up to 83 and 94% degradation of textile effluents were achieved using Fenton and Photo-Fenton process along with 56 and 76% COD reduction, respectively.

Keywords
Fenton oxidation, Acid Yellow, Effluents, Dyes, Photo-Fenton, Textile effluents, Kinetics model, Detoxification

Published online 4/1/2018, 25 pages

DOI: http://dx.doi.org/10.21741/9781945291630-2

Part of Organic Pollutants in Wastewater I

References
[1] A. Banazadeh, H. Salimi, M. Khaleghi, S. Shafiei-Haghighi, Highly efficient degradation of hazardous dyes in aqueous phase by supported palladium nanocatalyst—A green approach, J. Environ. Chem. Eng. 4 (2015) 2178-2186. https://doi.org/10.1016/j.jece.2015.09.007
[2] N.K.R. Bogireddy, H.A.K. Kumar, B.K. Mandal, Biofabricated silver nanoparticles as green catalyst in the degradation of different textile dyes, J. Environ. Chem. Eng. 4 (2016) 56-64. https://doi.org/10.1016/j.jece.2015.11.004
[3] R. Dhanabal, A. Chithambararaj, S. Velmathi, A.C. Bose, Visible light driven degradation of methylene blue dye using Ag3PO4, J. Environ. Chem. Eng. 3 (2015) 1872-1881. https://doi.org/10.1016/j.jece.2015.06.001
[4] M. Ge, Y. Chen, M. Liu, M. Li, Synthesis of magnetically separable Ag3PO4/ZnFe2O4 composite photocatalysts for dye degradation under visible LED light irradiation, J. Environ. Chem. Eng. 3 (2015) 2809-2815. https://doi.org/10.1016/j.jece.2015.10.011
[5] S. Mandal, S. Natarajan, Adsorption and catalytic degradation of organic dyes in water using ZnO/ZnxFe3−xO4 mixed oxides, J. Environ. Chem. Eng. 3 (2015) 1185-1193. https://doi.org/10.1016/j.jece.2015.04.021
[6] S.P. Patil, V.S. Shrivastava, G.H. Sonawane, S.H. Sonawane, Synthesis of novel Bi2O3–montmorillonite nanocomposite with enhanced photocatalytic performance in dye degradation, J. Environ. Chem. Eng. 3 (2015) 2597-2603. https://doi.org/10.1016/j.jece.2015.09.005
[7] J. Wang, H. Zhu, C. Hurren, J. Zhao, E. Pakdel, Z. Li, X. Wang, Degradation of organic dyes by P25-reduced graphene oxide: Influence of inorganic salts and surfactants, J. Environ. Chem. Eng. 3 (2015) 1437-1443. https://doi.org/10.1016/j.jece.2015.05.008
[8] W. Abbas, T.H. Bokhari, I.A. Bhatti, M. Iqbal, Degradation study of disperse red F3BS by gamma radiation/H2O2, Asian J. Chem. 27 (2015) 282-286. https://doi.org/10.14233/ajchem.2015.17773
[9] N. Bilal, S. Ali, M. Iqbal, Application of advanced oxidations processes for the treatments of textile effluents, Asian J. Chem. 26 (2014) 1882.
[10] M. Iqbal, Vicia faba bioassay for environmental toxicity monitoring: a review, Chemosphere 144 (2016) 785-802. https://doi.org/10.1016/j.chemosphere.2015.09.048
[11] M. Iqbal, J. Nisar, Cytotoxicity and mutagenicity evaluation of gamma radiation and hydrogen peroxide treated textile effluents using bioassays, J. Environ. Chem. Eng. 3 (2015) 1912-1917. https://doi.org/10.1016/j.jece.2015.06.011
[12] H. Shindy, Basics in colors, dyes and pigments chemistry: A review, Chem. Int. 2 (2016) 29-36.
[13] A. Kumar, M. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: Symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol. 104 (2017) 1172–1184. https://doi.org/10.1016/j.ijbiomac.2017.06.116
[14] A. Babarinde, G.O. Onyiaocha, Equilibrium sorption of divalent metal ions onto groundnut (Arachis hypogaea) shell: kinetics, isotherm and thermodynamics, Chem. Int. 2 (2016) 37-46.
[15] M. Iqbal, R.A. Khera, Adsorption of copper and lead in single and binary metal system onto Fumaria indica biomass, Chem. Int. 1 (2015) 157b-163b.
[16] M.A. Jamal, M. Muneer, M. Iqbal, Photo-degradation of monoazo dye blue 13 using advanced oxidation process, Chem. Int. 1 (2015) 12-16.
[17] K. Qureshi, M.Z. Ahmad, I.A. Bhatti, M. Iqbal, A. Khan, Cytotoxicity reduction of wastewater treated by advanced oxidation process, Chem. Int. 1 (2015) 53-59.
[18] G. Sharma, S. Bhogal, M. Naushad, Inamuddin, A. Kumar, F.J. Stadler, Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants, J. Photochem. Photobiol. A Chem. 347 (2017) 235–243. https://doi.org/10.1016/j.jphotochem.2017.07.001
[19] M. Iqbal, I.A. Bhatti, Re-utilization option of industrial wastewater treated by advanced oxidation process, Pak. J. Agric. Sci. 51 (2014) 1141-1147.
[20] M. Iqbal, I.A. Bhatti, Gamma radiation/H2O2 treatment of a nonylphenol ethoxylates: Degradation, cytotoxicity, and mutagenicity evaluation, J. Hazard. Mater. 299 (2015) 351-360. https://doi.org/10.1016/j.jhazmat.2015.06.045
[21] F.P. Van der Zee, G. Lettinga, J.A. Field, Azo dye decolourisation by anaerobic granular sludge, Chemosphere 44 (2001) 1169-1176. https://doi.org/10.1016/S0045-6535(00)00270-8
[22] M.-W. Chang, J.-M. Chern, Decolorization of peach red azo dye, HF6 by Fenton reaction: Initial rate analysis, J. Taiwan Instit. Chem. Eng. 41 (2010) 221-228. https://doi.org/10.1016/j.jtice.2009.08.009
[23] K. Kümmerer, The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges, J. Environ. Manage. 90 (2009) 2354-2366. https://doi.org/10.1016/j.jenvman.2009.01.023
[24] M.S. Lucas, J.A. Peres, Decolorization of the azo dye reactive black 5 by fenton and photo-fenton oxidation, Dye. Pigment. 71 (2006) 236-244. https://doi.org/10.1016/j.dyepig.2005.07.007
[25] N.N. Mahamuni, Y.G. Adewuyi, Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation, Ultrason. Sonochem. 17 (2010) 990-1003. https://doi.org/10.1016/j.ultsonch.2009.09.005
[26] M. Muruganandham, M. Swaminathan, Advanced oxidative decolourisation of reactive yellow 14 azo dye by UV/TiO2, UV/H2O2, UV/H2O2/Fe2+ processes—a comparative study, Separat. Purificat. Technol. 48 (2006) 297-303. https://doi.org/10.1016/j.seppur.2005.07.036
[27] M. Pera-Titus, V. Garcı́a-Molina, M.A. Baños, J. Giménez, S. Esplugas, Degradation of chlorophenols by means of advanced oxidation processes: a general review, Appl. Catal. B: Environ. 47 (2004) 219-256. https://doi.org/10.1016/j.apcatb.2003.09.010
[28] M. Rauf, S.S. Ashraf, Radiation induced degradation of dyes—an overview, J. Hazard. Mater. 166 (2009) 6-16. https://doi.org/10.1016/j.jhazmat.2008.11.043
[29] M. Behnajady, N. Modirshahla, F. Ghanbary, A kinetic model for the decolorization of CI acid yellow 23 by fenton process, J. Hazard. Mater. 148 (2007) 98-102. https://doi.org/10.1016/j.jhazmat.2007.02.003
[30] M. Behnajady, N. Modirshahla, N. Daneshvar, M. Rabbani, Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates, Chem. Eng. J. 127 (2007) 167-176. https://doi.org/10.1016/j.cej.2006.09.013
[31] J.-H. Sun, S.-P. Sun, M.-H. Fan, H.-Q. Guo, L.-P. Qiao, R.-X. Sun, A kinetic study on the degradation of p-nitroaniline by Fenton oxidation process, J. Hazard. Mater. 148 (2007) 172-177. https://doi.org/10.1016/j.jhazmat.2007.02.022
[32] C.F. Bustillo-Lecompte, M. Mehrvar, E. Quiñones-Bolaños, Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobic–aerobic and UV/H2O2 processes, J. Environ. Manage. 134 (2014) 145-152. https://doi.org/10.1016/j.jenvman.2013.12.035
[33] M. Iqbal, I.A. Bhatti, M. Zia-ur-Rehman, H.N. Bhatti, M. Shahid, Efficiency of advanced oxidation processes for detoxification of industrial effluents, Asian J. Chem. 26 (2014) 4291-4296. https://doi.org/10.14233/ajchem.2014.16959
[34] L. Rizzo, Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment, Water Res. 45 (2011) 4311-4340. https://doi.org/10.1016/j.watres.2011.05.035
[35] M. Iqbal, M. Abbas, M. Arshad, T. Hussain, A.U. Khan, N. Masood, M.A. Tahir, S.M. Hussain, T.H. Bokhari, R.A. Khera, Gamma I radiation treatment for reducing cytotoxicity and mutagenicity in industrial wastewater, Polish J. Environ. Stud. 24 (2015) 2745-2750. https://doi.org/10.15244/pjoes/59233