Photo-Electrochemical Reduction of CO2 to Solar Fuel: A Review


Photo-Electrochemical Reduction of CO2 to Solar Fuel: A Review

K.J. Shah, S.Y. Pan, V. Gandhi, P.C. Chiang

Green chemistry and sustainable technology for CO2 capture, sequestration and utilization are urgently required to control CO2 growth. Amongst the available major methods (including chemical, photochemical, electrochemical and enzymatic methods), the photo-electrochemical method, especially development for solar to chemical or fuel technology, offers a green and potential alternative for efficient CO2 capture and conversion. This is a very active research area covering wide concepts and ideas under investigation with many barriers considering system engineering. This review will discuss the recent progress in this field as well as give a brief background on solar fuel conversion from captured CO2, suitable procedure for the solar fuel production and some of their critical components with case studies of methanol production.

Green Chemistry, Solar Fuels, Photo-Electrochemical Solar Devices, Methanol, Carbon Utilization

Published online 2/25/2018, 24 pages


Part of Photocatalytic Nanomaterials for Environmental Applications

[1] P.T. Anastas, M.M. Kirchhoff, Origins, current status, and future challenges of green chemistry, Acc. Chem. Res., 35 (2002) 686–694.
[2] P. Anastas, N. Eghbali, Green Chemistry: Principles and Practice, (2009) 301–312.
[3] D. Patel, S. Kellici, B. Saha, Green Process Engineering as the Key to Future Processes, Processes, 2 (2014) 311–332.
[4] I.T. Horvth, P.T. Anastas, Innovations and Green Chemistry, Chem. Rev., 107 (2007) 2169–2173.
[5] T. V. Ramachandra, B.H. Aithal, K. Sreejith, GHG footprint of major cities in India, Renew. Sustain. Energy Rev., 44 (2015) 473–495.
[6] K. Riahi, D. P. Van Vuuren, E. Kriegler, J. Edmonds, B. C. O’neill, S. Fujimori, W. Lutz, The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview, Global Environmental Change, 42 (2017) 153-168.
[7] F.A. Rahman, M.M.A. Aziz, R. Saidur, W.A.W.A. Bakar, M.R. Hainin, R. Putrajaya, N.A. Hassan, Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future, Renew. Sustain. Energy Rev., 71 (2017) 112–126.
[8] M. Meinshausen, N. Meinshausen, W. Hare, S.C.B. Raper, K. Frieler, R. Knutti, D.J. Frame, M.R. Allen, Greenhouse-gas emission targets for limiting global warming to 2 degrees C., Nature, 458 (2009) 1158–1162.
[9] J. Rogelj, J. Nabel, C. Chen, W. Hare, K. Markmann, M. Meinshausen, M. Schaeffer, K. Macey, N. Höhne, Copenhagen Accord pledges are paltry, Nature, 464 (2010) 1126-1128.
[10] L.C. Lau, K.T. Lee, A.R. Mohamed, Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord – A comment, Renew. Sustain. Energy Rev. 16 (2012) 5280–5284.
[11] J. Rogelj, M. Den Elzen, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, M. Meinshausen, Perspective : Paris Agreement climate proposals need boost to keep warming well below 2° C, Nat. Clim. Chang. 534 (2016) 631–639.
[12] J. Gibbins, H. Chalmers, Carbon capture and storage, Energy Policy. 36 (2008) 4317–4322.
[13] P. Li, S.Y. Pan, S. Pei, Y.J. Lin, P.C. Chiang, Challenges and perspectives on carbon fixation and utilization technologies: An overview, Aerosol Air Qual. Res. 16 (2016) 1327–1344.
[14] J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, Advances in CO2 capture technology-The U.S. Department of Energy’s Carbon Sequestration Program, Int. J. Greenh. Gas Control. 2 (2008) 9–20.
[15] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sustain. Energy Rev. 39 (2014) 426–443.
[16] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.M. Amann, C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Appl. Therm. Eng. 30 (2010) 53–62.
[17] M.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies: A review, Energy. 46 (2012) 431–441.
[18] M.M. Hossain, H.I. de Lasa, Chemical-looping combustion (CLC) for inherent CO2 separations-a review, Chem. Eng. Sci. 63 (2008) 4433–4451.
[19] C.-H. Yu, A Review of CO2 Capture by Absorption and Adsorption, Aerosol Air Qual. Res. (2012) 745–769.
[20] Z. Yong, V. Mata, A.E. Rodrigues, Adsorption of carbon dioxide at high temperature—a review, Sep. Purif. Technol. 26 (2002) 195–205.
[21] H. Yang, Z. Xu, M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I. Wright, Progress in carbon dioxide separation and capture: a review., J. Environ. Sci. (China). 20 (2008) 14–27.
[22] D. Aaron, C. Tsouris, Separation of CO2 from Flue Gas: A Review, Sep. Sci. Technol. 40 (2005) 321–348.
[23] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: 1 review of state of the art, Ind. Chem. Eng. 48 (2009) 4638–63.
[24] P. Babu, P. Linga, R. Kumar, P. Englezos, A review of the hydrate based gas separation (HBGS) process forcarbon dioxide pre-combustion capture, Energy. 85 (2015) 261–279.
[25] K. Maqsood, A. Mullick, A. Ali, K. Kargupta, S. Ganguly, Cryogenic carbon dioxide separation from natural gas: A review based on conventional and novel emerging technologies, Rev. Chem. Eng. 30 (2014) 453–477.
[26] S. J. Baines, R. H. Worden, Geological storage of carbon dioxide. Geological Society, London, Special Publications, 233(2004) 1-6.
[27] J.Q. Shi, S. Durucan, CO2 storage in underground coal seams, Oil & Gas Science and Technology Rev., 60 (2005) 1–18.
[28] S. Thomas, Enhanced oil recovery-an overview, Oil & Gas Science and Technology Rev.,63 (2008) 9–19.
[29] M. Bentham, G. Kirby, CO2 Storage in Saline Aquifers, Oil & Gas Science and Technology Rev. 60 (2005) 559–567.
[30] B. A. Seibel, P. J. Walsh, Potential impacts of CO2 injection on deep-sea biota. Science, 294 (2001) 319-320.
[31] V. Anderson, S. Woodhouse, O. F. Graff, J. S. Gudmundson, Hydrates for deep ocean storage of CO2. In Proceedings of the Fifth International Conference on Gas Hydrates,13, 16, (2005) 1135-1139.
[32] E. Alper, O. Yuksel Orhan, CO2 utilization: Developments in conversion processes, Petroleum. 3 (2016) 109–126.
[33] C.H. Huang, C.S. Tan, A review: CO2 utilization, Aerosol Air Qual. Res. 14 (2014) 480–499.
[34] E. C. Francisco, D. B. Neves, E. Jacob‐Lopes, T. T. Franco, (2010). Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality.” Journal of Chemical Technology and Biotechnology 85 no. 3 (2010) 395-403.
[35] S.-Y. Pan, K.J. Shah, Y.-H. Chen, M.-H. Wang, P.-C. Chiang, Deployment of Accelerated Carbonation Using Alkaline Solid Wastes for Carbon Mineralization and Utilization Toward a Circular Economy, ACS Sustain. Chem. Eng. (2017) acssuschemeng.7b00291. doi:10.1021/acssuschemeng.7b00291.
[36] X. Xiaoding, J.A. Moulijn, Mitigation of CO2 by Chemical Conversion: Plausible Reactions and Promising Products, Energy & Fuels. 10 (1996) 305–325.
[37] J. Barber, Photosynthetic energy conversion: natural and artificial, Chem. Soc. Rev. 38 (2009) 185–96.
[38] A. Listorti, J. Durrant, J. Barber, Artificial photosynthesis: Solar to fuel, Nat. Mater. 8 (2009) 929–930.
[39] H.B. Gray, Powering the planet with solar fuel, Nat. Chem. 1 (2009) 7.
[40] K.J. Shah, T. Imae, Photoinduced enzymatic conversion of CO 2 gas to solar fuel on functional cellulose nanofiber films, J. Mater. Chem. A. 5 (2017) 9691–9701.
[41] J. Barber, P.D. Tran, From natural to artificial photosynthesis., J. R. Soc. Interface. 10 (2013) 20120984.
[42] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Catalysis and the Use of Energy by Cells.
[43] B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C.P. Kubiak, Photochemical and photoelectrochemical reduction of CO2., Annu. Rev. Phys. Chem. 63 (2012) 541–69.
[44] J.I. Goldsmith, W.R. Hudson, M.S. Lowry, T.H. Anderson, S. Bernhard, Discovery and high-throughput screening of heteroleptic iridium complexes for photoinduced hydrogen production, J. Am. Chem. Soc. 127 (2005) 7502–7510.
[45] D.J. Boston, C. Xu, D.W. Armstrong, F.M. Macdonnell, Photochemical reduction of carbon dioxide to methanol and formate in a homogeneous system with pyridinium catalysts, J. Am. Chem. Soc. 135 (2013) 16252–16255.
[46] E.B. Cole, P.S. Lakkaraju, D.M. Rampulla, A.J. Morris, E. Abelev, A.B. Bocarsly, Using a One Electron Shuttle for the Multi- electron Reduction of CO 2 to Methanol, J. Amercian Chem. Soc. (2010) 11539–11551.
[47] K. Ma, O. Yehezkeli, E. Park, J.N. Cha, Enzyme Mediated Increase in Methanol Production from Photoelectrochemical Cells and CO2, ACS Catal. 6 (2016) 6982–6986.
[48] G. Seshadri, C. Lin, A.B. Bocarsly, A new homogeneous electrocatalyst for the reduction of carbon dioxide to methanol at low overpotential, J. Electroanal. Chem. 372 (1994) 145–150.
[49] J. A. Turner, A Realizable Renewable Energy Future, Sci., 285 (1999) 687–689.
[50] L. M. Teesch, J. Adams, Intrinsic interactions between alkaline earth metal ions and peptides: a gas-phase study, J. Am. Chem. Soc. (1990) 4110–4120.
[51] Y. Matsubara, D.C. Grills, Y. Kuwahara, Thermodynamic Aspects of Electrocatalytic CO2 Reduction in Acetonitrile and with an Ionic Liquid as Solvent or Electrolyte, ACS Catal. 5 (2015) 6440–6452.
[52] C. Janáky, D. Hursán, B. Endrődi, W. Chanmanee, D. Roy, D. Liu, N.R. de Tacconi, B.H. Dennis, K. Rajeshwar, Electro- and Photoreduction of Carbon Dioxide: The Twain Shall Meet at Copper Oxide/Copper Interfaces, ACS Energy Lett. 1 (2016) 332–338.
[53] D.H. Apaydin, E. Tordin, E. Portenkirchner, G. Aufischer, S. Schlager, M. Weichselbaumer, K. Oppelt, N.S. Sariciftci, Photoelectrochemical Reduction of CO 2 Using Third-Generation Conjugated Polymers, ChemistrySelect. 1 (2016) 1156–1162.
[54] A.J. Nozik, Photoelectrochemistr Y : Conversion, Ann. Rev. Phys. Chem. 29 (1978) 189–222.
[55] H. Ishida, K. Tanaka, T. Tanaka, Electrochemical CO2 reduction catalyzed by ruthenium complexes [Ru(bpy)2(CO)2]2+ and [Ru(bpy)2(CO)Cl]+. Effect of pH on the formation of CO and HCOO-, Organometallics. 6 (1987) 181–186.
[56] Y. Nakamura, R. Hinogami, S. Yae, Y. Nakato, Photoelectrochemical reduction of CO2 at a metal-particle modified p-Si electrode in non-aqueous solutions, Adv. Chem. Conversions Mitigating Carbon Dioxide. 114 (1998) 565–568.
[57] R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, An Approach to Ideal Semiconductor Electrodes for Efficient Photoelectrochemical Reduction of Carbon Dioxide by Modification with Small Metal Particles, J. Phys. Chem. B. 102 (1998) 974–980.
[58] E.E. Barton, D.M. Rampulla, A.B. Bocarsly, Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed, J. Am. Chem. Soc. 130 (2008) 6342–6344.
[59] J.M. Saveant, Molecular catalysis of electrochemical reactions. Mechanistic aspects, Chem. Rev. 108 (2008) 2348–2378.
[60] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar Water Splitting Cells, Pubs.Acs.Org. (2010) 6446–6473.
[61] J.M. Smieja, C.P. Kubiak, Re(bipy-tBu)(CO)3Cl-improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies, Inorg. Chem. 49 (2010) 9283–9289.
[62] N.S. Spinner, J.A. Vega, W.E. Mustain, Recent progress in the electrochemical conversion and utilization of CO2, Catal. Sci. Technol. Catal. Sci. Technol. (2012) 19–28.
[63] R. Kuriki, O. Ishitani, K. Maeda, Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts, ACS Appl. Mater. Interfaces. 8 (2016) 6011–6018.
[64] S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol, Chem. Eng. J. 116 (2006) 227–231.
[65] P. Luis, Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives, Desalination. 380 (2016) 93–99.
[66] M. Mikkelsen, M. Jørgensen, F.C. Krebs, The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide, Energy Environ. Sci. 3 (2010) 43–81.
[67] B. Aurian-Blajeni, M. Halmann, J. Manassen, Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes, Sol. Energy Mater. 8 (1983) 425–440.
[68] J. A. Herron, J. Kim, A. A. Upadhye, , G. W. Huber, C. T. Maravelias, A general framework for the assessment of solar fuel technologies.” Energy & Environmental Science 8, no. 1 (2015): 126-157.
[69] K. Hara, Electrocatalytic Formation of CH4 from CO2 on a Pt Gas Diffusion Electrode, J. Electrochem. Soc. 144 (1997) 539.
[70] E. Kecsenovity, B. Endrödi, P.S. Tóth, Y. Zou, R.A.W. Dryfe, K. Rajeshwar, C. Janáky, Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids, J. Am. Chem. Soc. 139 (2017) 6682–6692.
[71] Z. Guo, T. Liu, W. Li, C. Zhang, D. Zhang, Z. Pang, Carbon Supported Oxide-Rich Pd-Cu Bimetallic Electrocatalysts for Ethanol Electrooxidation in Alkaline Media Enhanced by Cu/CuOx, Catalysts. 6 (2016) 62.
[72] B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies, Renew. Sustain. Energy Rev. 15 (2011) 1625–1636.
[73] K. Ogura, M. Yamada, M. Nakayama, N. Endo, Electrocatalytic Reduction of CO2 to Worthier Compounds on a Functional Dual-Film Electrode with a Solar Cell as the Energy Source, Adv. Chem. Conversions Mitigating Carbon Dioxide. 114 (1998) 207–212.
[74] M. Halmann, M. Ulman, B. Aurian-Blajeni, Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide, Sol. Energy. 31 (1983) 429–431.
[75] A. Bard, M.A. Fox, Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen, J. Chem. Inf. Model. 53 (2013) 1689–1699.
[76] A. Goeppert, M. Czaun, J.-P. Jones, G.K. Surya Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products – closing the loop, Chem. Soc. Rev. 43 (2014) 7995–8048.
[77] M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S.E. Oh, Microbial fuel cell as new technol ogy for bioelectricity generation: A review, Alexandria Eng. J. 54 (2015) 745–756.
[78] K. Ogura, Catalytic Conversion of Carbon Monoxide and Carbon Dioxide into Methanol with Photocells, J. Electrochem. Soc. 134 (1987) 2749.
[79] K. Ogura, H. Uchida, Electrocatalytic reduction of carbon dioxide to methanol. Part 5. Relationship between the ability of metal complexes to engage in homogeneous catalysis and their co-ordination chemistry. Journal of the Chemical Society, Dalton Transactions, 6 (1987), 1377-1380.
[80] J. Shi, Y. Jiang, Z. Jiang, X. Wang, X. Wang, S. Zhang, P. Han, C. Yang, Enzymatic conversion of carbon dioxide, Chem. Soc. Rev. Chem. Soc. Rev. 44 (2015) 5981–6000.
[81] N. V. D. Long, J. Lee, K.-K. Koo, P. Luis, M. Lee, Recent Progress and Novel Applications in Enzymatic Conversion of Carbon Dioxide, Energies. 10 (2017) 473.
[82] B.R. Crable, C.M. Plugge, M.J. McInerney, A.J.M. Stams, Formate formation and formate conversion in biological fuels production., Enzyme Res. 2011 (2011) 532536.
[83] Y. Amao, Solar fuel production based on the artificial photosynthesis system, ChemCatChem. 3 (2011) 458–474.
[84] T. Noji, K. Kawakami, J.R. Shen, T. Dewa, M. Nango, N. Kamiya, S. Itoh, T. Jin, Oxygen-Evolving Porous Glass Plates Containing the Photosynthetic Photosystem II Pigment-Protein Complex, Langmuir. 32 (2016) 7796–7805.
[85] K.J. Shah, T. Imae, A. Shukla, Selective capture of CO 2 by poly(amido amine) dendrimer-loaded organoclays, RSC Adv. 5 (2015) 35985–35992.
[86] K.J. Shah, T. Imae, Selective Gas Capture Ability of Gas-Adsorbent-Incorporated Cellulose Nanofiber Films, Biomacromolecules. 17 (2016) 1653–1661.
[87] J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo, J.K. Nørskov, Materials for Solar Fuels and Chemicals, Nat. Mater. 16 (2017) 70-81.
[88] A. Víctor, D. P. Serrano, J. M. Coronado, Current Challenges of CO2 Photocatalytic Reduction Over Semiconductors Using Sunlight. In From Molecules to Materials (171-191). Springer International Publishing (2015).
[89] J. Hong, W. Zhang, J. Ren, R. Xu, Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods, Anal. Methods. 5 (2013) 1086–1097.
[90] C.-J. Li, B.M. Trost, Green chemistry for chemical synthesis., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 13197–13202.
[91] S. Bensaid, G. Centi, E. Garrone, S. Perathoner, G. Saracco, Towards artificial leaves for solar hydrogen and fuels from carbon dioxide, ChemSusChem. 5 (2012) 500–521.
[92] S. Lata, P.K. Singh, S.R. Samadder, Regeneration of adsorbents and recovery of heavy metals: a review, Int. J. Environ. Sci. Technol. 12 (2015) 1461–1478.
[93] J. H. Alstrum-Acevedo, M. K. Brennaman, T. J. Meyer, Chemical approaches to artificial photosynthesis. 2. Inorganic Chemistry, 44,20 (2005), 6802-6827.
[94] D. Gust, T.A. Moore, A.L. Moore, Solar fuels via artificial photosynthesis, Acc.Chem.Res. 42 (2009) 1890–1898.
[95] D.G. Nocera, The artificial leaf, Acc. Chem. Res. 45 (2012) 767–776.
[96] Y. Tachibana, L. Vayssieres, J. R. Durrant, Artificial photosynthesis for solar water-splitting. Nature Photonics, 6,8 (2012) 511-518.
[97] T.A. Faunce, Future Perspectives on Solar Fuels, Mol. Sol. Fuels. (2012) 506–528.