Effect of TiO2 Nanotube Calcination Temperature and Oxygen Pressure to Photocatalytic Oxidation of Phenol

$20.00

Effect of TiO2 Nanotube Calcination Temperature and Oxygen Pressure to Photocatalytic Oxidation of Phenol

F.F. Orudzhev, A.B. Isaev, N.N. Shabanov

The influences of oxygen pressure and TiO2 nanotubes calcination temperature on the photocatalytic degradation phenol were investigated. According to experimental results the dissolved oxygen at different pressure and TiO2 calcination temperature was a determining parameter for the photocatalytic degradation of phenol. The calcination temperature of TiO2 nanotubes affects the anatase phase, crystallite size, surface area and pore volume of TiO2 powder and respectively to rate of photodegradation of phenol. The kinetics of photocatalytic degradation of phenol in presence of TiO2 nanotubes at high pressure of oxygen is investigated. The initial rate of photodegradation phenol were increased from 0.21 to 0.52 mg∙l–1∙min-1 when the initial oxygen pressure was increased from 0.1 to 0.6 MPa and have linear relationship between phenol oxidation rate and the oxygen pressure. The dissolved oxygen acted as an electron scavenger with formation reactive oxygen species such as the superoxide ion and the hydroxyl radical.

Keywords
Calcinations Temperature, Oxygen Pressure, Phenol, Photocatalytic Degradation, TiO2 Nanotubes

Published online 2/25/2018, 15 pages

DOI: http://dx.doi.org/10.21741/9781945291593-5

Part of Photocatalytic Nanomaterials for Environmental Applications

References
[1] S. Martha, D.P. Das, N. Biswal, and K.M. Parida, Facile synthesis of visible light responsive V2O5/N,S–TiO2 composite photocatalyst: enhanced hydrogen production and phenol degradation, J. Mater. Chem. 22 (2012) 10695-10703. https://doi.org/10.1039/c2jm30462g
[2] S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, and M. A. Hashib, Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: A review. Water. Air. Soil Pollut. 215 (2011) 3–29. https://doi.org/10.1007/s11270-010-0456-3
[3] Y.-H. Shen, Removal of phenol from water by adsorption-flocculation using organobentonite. Water Res. 36 (2002) 1107–1114. https://doi.org/10.1016/S0043-1354(01)00324-4
[4] A.S. Fajardo, R.F. Rodrigues, R.C. Martins, L.M. Castro, and R.M. Quinta-Ferreira, Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chem. Eng. J. 275 (2015) 331–341. https://doi.org/10.1016/j.cej.2015.03.116
[5] A. Dabrowski, P. Podkościelny, Z. Hubicki, and M. Barczak, Adsorption of phenolic compounds by activated carbon-a critical review. Chemosphere. 58 (2005) 1049–1070. https://doi.org/10.1016/j.chemosphere.2004.09.067
[6] A. Mnif, D. Tabassi, M. Ben Sik Ali, and B. Hamrouni, Phenol removal from water by AG reverse osmosis membrane. Environ. Prog. Sustain. Energy. 34 (2015) 982–989.
[7] N.V. Pradeep, S. Anupama, K. Navya, H.N. Shalini, M. Idris, and U.S. Hampannavar, Biological removal of phenol from wastewaters: a mini review. Appl. Water Sci. 5 (2014) 105–112. https://doi.org/10.1007/s13201-014-0176-8
[8] M.A. Fox, and M.T. Dulay, Heterogeneous Photocatalysis. Chem. Rev. 93 (1993) 341–357. https://doi.org/10.1021/cr00017a016
[9] J. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today. 53 (1999) 115–129. https://doi.org/10.1016/S0920-5861(99)00107-8
[10] U.I. Gaya, and A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C Photochem. Rev. 9 (2008) 1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003
[11] K. Pirkanniemi, and M. Sillanpää, Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere. 48 (2002) 1047–1060. https://doi.org/10.1016/S0045-6535(02)00168-6
[12] U. Gaya, Heterogeneous photocatalysis using inorganic semiconductor solids (Springer Science & Business Media, 2013).
[13] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’shea, M.H. Entezari, and D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125 (2012) 331–349. https://doi.org/10.1016/j.apcatb.2012.05.036
[14] M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95 (1995) 69–96. https://doi.org/10.1021/cr00033a004
[15] K. Nakata, and A. Fujishima, TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol. C Photochem. Rev. 13 (2012) 169–189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
[16] A.L. Linsebigler, G. Lu, and J.T. Yates, Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. 95 (1995) 735–758. https://doi.org/10.1021/cr00035a013
[17] A. Fujishima, T.N. Rao, and D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1 (2000) 1–21. https://doi.org/10.1016/S1389-5567(00)00002-2
[18] J.-M. Herrmann, C. Duchamp, M. Karkmaz, B.T. Hoai, H. Lachheb, E. Puzenat, and C. Guillard, Environmental green chemistry as defined by photocatalysis. J. Hazard. Mater. 146 (2007) 624–629. https://doi.org/10.1016/j.jhazmat.2007.04.095
[19] A. Fujishima, X. Zhang, and D. Tryk, Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy. 32 (2007) 2664–2672. https://doi.org/10.1016/j.ijhydene.2006.09.009
[20] D. Bahnemann, Photocatalytic water treatment: solar energy applications. Sol. Energy. 77 (2004) 445–459. https://doi.org/10.1016/j.solener.2004.03.031
[21] J. Qiu, S. Zhang, and H. Zhao, Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media. Sensors Actuators, B Chem. 160 (2011) 875–890. https://doi.org/10.1016/j.snb.2011.08.077
[22] K. Rajeshwar, Photoelectrochemistry and the environment. J. Appl. Electrochem. 25 (1995) 1067–1082. https://doi.org/10.1007/BF00242533
[23] D.V. Bavykin, V.N. Parmon, A.A. Lapkin, and F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mat. Chem. 14 (2004) 3370-3377. https://doi.org/10.1039/b406378c
[24] R.J. Tayade, and D.L. Key, Synthesis and Characterization of Titanium Dioxide Nanotubes for Photocatalytic Degradation of Aqueous Nitrobenzene in the Presence of Sunlight. Materials Science Forum. 657 (2010) 62-74. https://doi.org/10.4028/www.scientific.net/MSF.657.62
[25] T.S. Natarajan, K. Natarajan, H.C. Bajaj, and R.J. Tayade, Energy Efficient UV-LED Source and TiO2 Nanotube Array-Based Reactor for Photocatalytic Application. Ind. Eng. Chem. Res. 50 (2011) 7753-7762. https://doi.org/10.1021/ie200493k
[26] K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.Sh. Choi, and C.A. Grimes, Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative photoelectrochemistry. J. Phys. Chem. C. 113 (2009) 6327–6359. https://doi.org/10.1021/jp809385x
[27] M.A. Rauf, and S.S. Ashraf, Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151 (2009) 10–18. https://doi.org/10.1016/j.cej.2009.02.026
[28] T. Velegraki, I. Poulios, M. Charalabaki, N. Kalogerakis, P. Samaras, and D. Mantzavinos, Photocatalytic and sonolytic oxidation of acid orange 7 in aqueous solution. Appl. Catal. B Environ. 62 (2006) 159–168. https://doi.org/10.1016/j.apcatb.2005.07.007
[29] A.M. Abdullah, N.J. Al-Thani, K. Tawbi, and H. Al-Kandari, Carbon/nitrogen-doped TiO2: New synthesis route, characterization and application for phenol degradation. Arab. J. Chem. 9 (2016) 229–237. https://doi.org/10.1016/j.arabjc.2015.04.027
[30] F.F. Orudzhev, F.G. Gasanova, Z.M. Aliev, and A.B. Isaev, Photoelectrocatalytic oxidation of phenol on platinum-modified TiO2 nanotubes. Nanotechnologies in Russia. 7 (2012) 482-485. https://doi.org/10.1134/S1995078012050102
[31] F.F. Orudzhev, F.G. Gasanova, Z.M. Aliev, A.B. Isaev, and N.S. Shabanov, Photoelectrocatalytic oxidation of phenol on TiO2 nanotubes under oxygen pressure. Russ. J. Electrochem. 51 (2015) 1108-1114. https://doi.org/10.1134/S1023193515110130
[32] S.-H. Lin, C.-H. Chiou, C.-K. Chang, and R.-S. Juang, Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation. J. Environ. Manage. 92 (2011) 3098–3104. https://doi.org/10.1016/j.jenvman.2011.07.024
[33] W.Y. Gan, M.W. Lee, R. Amal, H. Zhao, and K. Chiang, Photoelectrocatalytic activity of mesoporous TiO2 films prepared using the sol-gel method with tri-block copolymer as structure directing agent. J. Appl. Electrochem. 38 (2008) 703–712. https://doi.org/10.1007/s10800-008-9495-5
[34] K. Ángel-Sánchez, O. Vázquez-Cuchillo, M. Salazar-Villanueva, J.F. Sánchez-Ramírez, A. Cruz-López, and A. Aguilar-Elguezabal, Preparation, characterization and photocatalytic properties of TiO2 nanostructured spheres synthesized by the Sol–Gel method modified with ethylene glycol. J. Sol-Gel Sci. Technol. 58 (2011) 360–365. https://doi.org/10.1007/s10971-011-2401-3
[35] C.A. Castro, A. Centeno, and S.A. Giraldo, Iron promotion of the TiO2 photosensitization process towards the photocatalytic oxidation of azo dyes under solar-simulated light irradiation. Mater. Chem. Phys. 129 (2011) 1176–1183. https://doi.org/10.1016/j.matchemphys.2011.05.082
[36] S.L. Orozco, C. A. Arancibia-Bulnes, and R. Suárez-Parra, Radiation absorption and degradation of an azo dye in a hybrid photocatalytic reactor. Chem. Eng. Sci. 64 (2009) 2173–2185. https://doi.org/10.1016/j.ces.2009.01.038
[37] D.-H. Tseng, L.-C. Juang, and H.-H. Huang, Effect of Oxygen and Hydrogen Peroxide on the Photocatalytic Degradation of Monochlorobenzene in Aqueous Suspension. Int. J. Photoenergy. (2012) 1–9. https://doi.org/10.1155/2012/328526