Recent Developments in Cu2ZnSnS4 (CZTS) Preparation, Optimization and its Application in Solar Cell Development and Photocatalytic Applications


Recent Developments in Cu2ZnSnS4 (CZTS) Preparation, Optimization and its Application in Solar Cell Development and Photocatalytic Applications

S.B. Patel, J.V. Gohel

In the present study, a topical review of recent advances in Copper Zinc Tin Sulfide -CZTS (Cu2ZnSnS4) preparation and its potential application related to solar cell development and as photocatalyst are discussed in detail. A rigorous review on the preparation of CZTS thin film using spin coating and spray pyrolysis methods are the main focus in the present study as these methods are easily up-scalable. The film quality controlling parameters are also discussed in detail. Recent and advanced studies on CZTS thin film preparation methods are also discussed. Lastly, some future research scopes for solar cells are explored.

CZTS, Thin Film, Photocatalyst, Spray Pyrolysis, Spin Coating, Quality Controlling Parameters

Published online 2/25/2018, 35 pages


Part of Photocatalytic Nanomaterials for Environmental Applications

[1] J.F. Mercure, P. Salas, An assessement of global energy resource economic potentials, Energy 46 (2012) 322–336.
[2] F. Bayrak, N. Abu-Hamdeh, K.A. Alnefaie, H.F. Oztop, A review on exergy analysis of solar electricity production, Renew. Sustainable Energy Rev. 74 (2017) 755–770.
[3] M. Pehnt, Dynamic life cycle assessment (LCA) of renewable energy technologies, Renew. Energy 31 (2006) 55–71.
[4] Z.M. Salameh, F. Dagher, W.A. Lynch, Step-down maximum power point tracker for photovoltaic systems, Sol. Energy 46 (1991) 5 279–282.
[5] M.A. Green, Third generation photovoltaics: solar cells for 2020 and beyond, Physica E 14 (2002) 65–70.
[6] R.W. Miles, G. Zoppi, I. Forbes, Inorganic photovoltaic cells, Mater. Today 10, 11 (2007) 20–27.
[7] M.A. Green, Solar cell efficiency tables (version 49): Solar cell efficiency tables (version 49), Prog Photovoltaics Res Appl. 25 (2017) 3–13.
[8] A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell, M.D. McGehee, Polymer-based solar cells, Mater. Today, vol. 10 (2007) 28–33.
[9] J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, Y.H. Lee, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, M. Gratzel, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics 7 (2013) 486–491.
[10] G. Conibeer, M. Green, R. Corkish, Y. Cho, E.C. Cho, C.W. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, Silicon nanostructures for third generation photovoltaic solar cells, Thin Solid Films 511 (2006) 654–662.
[11] N. Ali, A. Hussain, R. Ahmed, M.K. Wang, C. Zhao, B.U. Haq, Y.Q. Fu, Advances in nanostructured thin film materials for solar cell applications, Renew. Sustainable Energy Rev. 59 (2016) 726–737.
[12] L. E. Valle Rios, K. Neldner, G. Gurieva, S. Schorr, Existence of off-stoichiometric single phase kesterite, J. Alloys Compd. (2016) 408–413.
[13] P. Kush, K. Deori, A. Kumar, S. Deka, Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr (vi) by surfactant free hydrophilic Cu2ZnSnS 4 nanoparticles, J. Mater. Chem. A 3 (2015) 8098-8106.
[14] S. Kumar, B. Kasubosula, M. Loorits, J. Raudoja, V. Mikli, M. Altosaar, M. Grossberg, Synthesis of Cu2ZnSnS4 Solar Cell Absorber Material by Sol-gel Method, Energy Procedia 102 (2016) 102–109.
[15] Z. Gong, Q. Han, J. Li, L. Hou, A. Bukhtiar, S. Yang, B. Zou, A solvothermal route to synthesize kesterite Cu2ZnSnS4 nanocrystals for solution-processed solar cells, J. Alloys Compd. 663 (2016) 617–623.
[16] D. Pareek, K. R. Balasubramaniam, P. Sharma, Synthesis and characterization of bulk Cu2ZnSnX4 (X: S, Se) via thermodynamically supported mechano-chemical process, Mater. Charact. 103 (2015) 42–49.
[17] M. Courel, J. A. Andrade-Arvizu, A. Guillen-Cervantes, M. M. Nicolas-Marin, F. A. Pulgarin-Agudelo, O. Vigil-Galan, Optimization of physical properties of spray-deposited Cu2ZnSnS4 thin films for solar cell applications, Mater. Des. 114 (2017) 515–520.
[18] A. Safdar, M. Islam, M.A. Akram, M. Mujahid, Y. Khalid, S.I. Shah, Reaction Time and Film Thickness Effects on Phase Formation and Optical Properties of Solution Processed Cu2ZnSnS4 Thin Films, J. Mater. Eng. Perform. 25 (2016) 457–465.
[19] T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, H. Katagiri, 6% Efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD, J. Mater. Chem. 22 (2012) 4021-4024.
[20] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, Preparation of Cu2ZnSnS4 thin films by hybrid sputtering, J. Phys. Chem. Solids 66 (2005) 1978–1981.
[21] S.A. Vanalakar, G.L. Agawane, S.W. Shin, M.P. Suryawanshi, K.V. Gurav, K.S. Jeon, P.S. Patil, C.W. Jeong, J.Y. Kim, J.H. Kim, A review on pulsed laser deposited CZTS thin films for solar cell applications, J. Alloys Compd. 619 (2015) 109–121.
[22] K. Ramasamy, M. A. Malik, P. O’Brien, Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells, Chem. Commun. 48 (2012) 5703-5714.
[23] H. Zhou, W.C. Hsu, H.S. Duan, B. Bob, W. Yang, T. B. Song, C.J. Hsu, Y. Yang, CZTS nanocrystals: a promising approach for next generation thin film photovoltaics, Energy Environ. Sci. 6 (2013) 2822-2838.
[24] S. Abermann, Non-vacuum processed next generation thin film photovoltaics: Towards marketable efficiency and production of CZTS based solar cells, Sol. Energy 94 (2013) 37–70.
[25] M.P. Suryawanshi, G.L. Agawane, S.M. Bhosale, S.W. Shin, P.S. Patil, J.H. Kim, A.V. Moholkar, CZTS based thin film solar cells: a status review, Mater. Technol. 28 (2013) 98–109.
[26] X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, A Review on Development Prospect of CZTS Based Thin Film Solar Cells, Int. J. Photoenergy2014 (2014) 1–11.
[27] H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films 517 (2009) 2455–2460.
[28] A. Polizzotti, I. L. Repins, R. Noufi, S. H. Wei, D. B. Mitzi, The state and future prospects of kesterite photovoltaics, Energy Environ. Sci. 6 (2013) 3171-3182.
[29] M. A. Majeed Khan, S. Kumar, M. Alhoshan, A. S. Al Dwayyan, Spray pyrolysed Cu2ZnSnS4 absorbing layer: A potential candidate for photovoltaic applications, Opt. Laser Technol. 49 (2013) 196–201.
[30] K. Tanaka, N. Moritake, H. Uchiki, Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors, Sol. Energy Mater. Sol. Cells 91 (2007) 1199–1201.
[31] W. Shockley, H. J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys. 32 (1961) 510-519.
[32] H. Sugimoto, H. Hiroi, N. Sakai, S. Muraoka, T. Katou, Over 8% efficiency Cu2ZnSnS4 submodules with ultra-thin absorber, presented at the IEEE Photovoltaic Spec. Conf. 2012 (2012) 002997–003000.
[33] M. Yang, X. Ma, Z. Jiang, Z. Li, S. Liu, Y. Lu, S. Wang, The Cu2ZnSnS4 solar cell with high open circuit voltage, Phys. B 509 (2017) 50–54.
[34] I. D. Olekseyuk, I. V. Dudchak, L. V. Piskach, Phase equilibria in the Cu2S–ZnS–SnS2 system, J. Alloys Compd.. 368 (2004) 135–143.
[35] K. Mokurala, S. Mallick, P. Bhargava, Low Temperature Synthesis and Characterization of Cu2ZnSnS4 (CZTS) Nanoparticle by Solution Based Solid State Reaction Method, Energy Procedia, vol. 57 (2014) 73–78.
[36] V. Kheraj, K. K. Patel, S. J. Patel, D. V. Shah, Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells, J. Cryst. Growth 362 (2013) 174–177.
[37] Y. Zhou, S. Xi, C. Sun, H. Wu, Facile synthesis of Cu2ZnSnS4 powders by mechanical alloying and annealing, Mater. Lett. 169 (2016) 176–179.
[38] S.C. Riha, B.A. Parkinson, A.L Prieto, Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals, J. Am. Chem. Soc. 131 (2009) 12054-12055.
[39] J. Chen, Q. Chen, Y. Ni, Y. Yamaguchi, T. Wang, Z. Jia, X. Dou, S. Zhuang, The synthesis of Cu2ZnSnS4 nanoparticles via an open-air solution route: influences of Zn precursor content, J. Sol-Gel Sci. Technol., 75 (2015) 25–30.
[40] Y.L. Zhou, W.H. Zhou, Y.F. Du, M. Li, S.X. Wu, Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method, Materials Letters 65 (2011) 1535-1537.
[41] X. Yan, X. Hu, S. Komarneni, Solvothermal synthesis of CZTS nanoparticles in ethanol: Preparation and characterization, J. Korean Phys. Soc. 66 (2015) 1511–1515.
[42] A. Arunachalam, S. Dhanapandian, C. Manoharan, M. Bououdina, G. Ramalingam, M. Rajasekaran, M. Radhakrishnan, A.M. Ibraheem, Influence of sprayed nanocrystalline Zn-doped TiO2 photoelectrode with the dye extracted from Hibiscus Surattensis as sensitizer in dye-sensitized solar cell, Ceram. Int. 42 (2016) 11136–11149.
[43] N. Nakayama, K. Ito, Sprayed films of stannite Cu2ZnSnS4, Applied Surface Science 92 (1996) 171–175.
[44] W. Daranfed, M. S. Aida, N. Attaf, J. Bougdira, H. Rinnert, Cu2ZnSnS4 thin films deposition by ultrasonic spray pyrolysis, J. Alloys Compd. 542 (2012) 22–27.
[45] D. K.G., N. Jampana, Development of an automated ultrasonic spray pyrolysis system and the growth of Cu2ZnSnS4 thin films, J. Anal. Appl. Pyrolysis 117 (2016) 141–146.
[46] G.L. Agawane, A.S. Kamble, S.A. Vanalakar, S.W. Shin, M.G. Gang, J.H. Yun, J. Gwak, A.V. Moholkar, J.H. Kim, Fabrication of 3.01% power conversion efficient high-quality CZTS thin film solar cells by a green and simple sol–gel technique, Mater. Lett. 158 (2015) 58–61.
[47] V. Tunuguntla, W.C. Chen, P.H. Shih, I. Shown, Y.R. Lin, J.S. Hwang, C.H. Lee, L.C. Chen, K.H. Chen, A nontoxic solvent based sol–gel Cu2ZnSnS4 thin film for high efficiency and scalable low-cost photovoltaic cells, J. Mater. Chem. A 3 (2015) 15324–15330.
[48] K. Tanaka, M. Oonuki, N. Moritake, and H. Uchiki, “Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing,” Sol. Energy Mater. Sol. Cells, vol. 93, no. 5, pp. 583–587, May 2009.
[49] K. Tanaka, Y. Fukui, N. Moritake, and H. Uchiki, “Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency,” Sol. Energy Mater. Sol. Cells, vol. 95, no. 3, pp. 838–842, Mar. 2011.
[50] R. Liu, M. Tan, X. Zhang, J. Chen, S. Song, and W. Zhang, “Impact of sol–gel precursor treatment with preheating temperature on properties of Cu2ZnSnS4 thin film and its photovoltaic solar cell,” J. Alloys Compd., vol. 655, pp. 124–129, Jan. 2016.
[51] Q. Guo, H. W. Hillhouse, R. Agrawal, Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells, J. Am. Chem. Soc.131 (2009) 11672–11673.
[52] X. Xin, M. He, W. Han, J. Jung, Z. Lin, Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells, Angew. Chem., Int. Ed. 50 (2011) 11739–11742.
[53] S. Chen, H. Tao, Y. Shen, L. Zhu, X. Zeng, J. Tao, T. Wang, Facile synthesis of single crystalline sub-micron Cu2ZnSnS4 (CZTS) powders using solvothermal treatment, RSC Adv. 5 (2015) 6682–6686.
[54] M. Espindola-Rodriguez, M. Placidi, O. Vigil-Galan, V. Izquierdo-Roca, X. Fontane, A. Fairbrother, D. Sylla, E. Saucedo, A. Perez-Rodriguez, Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis, Thin Solid Films 535 (2013) 67–72.
[55] O. Vigil-Galan, M. Espíndola-Rodriguez, M. Courel, X. Fontane, D. Sylla, V. Izquierdo-Roca, A. Fairbrother, E. Saucedo, A. Perez-Rodriguez, Secondary phases dependence on composition ratio in sprayed Cu2ZnSnS4 thin films and its impact on the high power conversion efficiency, Sol. Energy Mater. Sol. Cells 117 (2013) 246–250.
[56] O. Vigil-Galan, M. Courel, M. Espindola-Rodriguez, D. Jimenez-Olarte, M. Aguilar-Frutis, E. Saucedo, Electrical properties of sprayed Cu2ZnSnS4 thin films and its relation with secondary phase formation and solar cell performance, Sol. Energy Mater. Sol. Cells, 132 (2015) 557–562.
[57] V. G. Rajeshmon, M. R. R. Menon, C. S. Kartha, K. P. Vijayakumar, Effect of copper concentration and spray rate on the properties Cu2ZnSnS4 thin films deposited using spray pyrolysis, J. Anal. Appl. Pyrolysis, 110 (2014) 448–454.
[58] D. K.G., G. Chandrabose, N. Jampana, “Tailoring the properties of Cu2ZnSnS4 thin films grown by ultrasonic spray pyrolysis,” J. Anal. Appl. Pyrolysis 120 (2016) 356–360.
[59] S. M. Bhosale, M. P. Suryawanshi, J. H. Kim, A. V. Moholkar, Influence of copper concentration on sprayed CZTS thin films deposited at high temperature, Ceram. Int. 41 (2015) 8299–8304.
[60] S. Kermadi, S. Sali, F.A. Ameur, L. Zougar, M. Boumaour, A. Toumiat, N.N Melnik, D.W. Hewak, A. Duta, Effect of copper content and sulfurization process on optical, structural and electrical properties of ultrasonic spray pyrolysed Cu2ZnSnS4 thin films, Mater. Chem. Phys. 169 (2016) 96–104.
[61] T.H. Nguyen, S. Fujikawa, T. Harada, J. Chantana, T. Minemoto, S. Nakanishi, S. Ikeda, Impact of Precursor Compositions on the Structural and Photovoltaic Properties of Spray-Deposited Cu2ZnSnS4 Thin Films, ChemSusChem, 9 (2016) 2414–2420.
[62] S. K. Swami, A. Kumar, V. Dutta, Deposition of Kesterite Cu2ZnSnS4 (CZTS) Thin Films by Spin Coating Technique for Solar Cell Application, Energy Procedia, 33 (2013) 198–202.
[63] Z. Wei, M. Zhu, J. D. McGettrick, G. P. Kissling, L. M. Peter, T. M. Watson, The effect of additional sulfur on solution-processed pure sulfide Cu2ZnSnS4 solar cell absorber layers, MRS Adv. 1 (2016) 2815–2820.
[64] Z. Seboui, A. Gassoumi, N. Kamoun-Turki, Evolution of sprayed Cu2ZnSnS4, Mater. Sci. Semicond. Process. 26 (2014) 360–366.
[65] V. G. Rajeshmon, C. S. Kartha, K. P. Vijayakumar, C. Sanjeeviraja, T. Abe, Y. Kashiwaba, Role of precursor solution in controlling the opto-electronic properties of spray pyrolysed Cu2ZnSnS4 thin films, Sol. Energy 85 (2011) 249–255.
[66] K. Tanaka, M. Kato, H. Uchiki, Effects of chlorine and carbon on Cu2ZnSnS4 thin film solar cells prepared by spray pyrolysis deposition, J. Alloys Compd. 616 (2014) 492–497.
[67] S. Exarhos, K. N. Bozhilov, L. Mangolini, Spray pyrolysis of CZTS nanoplatelets, Chem. Commun. 50 (2014) 11366-11369.
[68] M. Boshta, S. Binetti, A. Le Donne, M. Gomaa, M. Acciarri, A chemical deposition process for low-cost CZTS solar cell on flexible substrates, Mater. Technol. 32 (2016) 251-255.
[69] N. Kamoun, H. Bouzouita, B. Rezig, Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique, Thin Solid Films 515 (2007) 5949–5952.
[70] Y. B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja, Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films, Sol. Energy Mater. Sol. Cells 93 (2009) 1230–1237.
[71] A. G. Kannan, T. E. Manjulavalli, J. Chandrasekaran, Influence of Solvent on the Properties of CZTS Nanoparticles, Procedia Eng. 141 (2016) 15–22.
[72] K. Rawat, H. J. Kim, P. K. Shishodia, Synthesis of Cu2ZnSnS4 nanoparticles and controlling the morphology with polyethylene glycol, Mater. Res. Bull., 77 (2016) 84–90.
[73] O. Vigil-Galan, M. Courel, M. Espindola-Rodriguez, V. Izquierdo-Roca, E. Saucedo, and A. Fairbrother, Toward a high Cu2ZnSnS4 solar cell efficiency processed by spray pyrolysis method, J. Renew. Sustain. Energy 5 (2013) 0–14.
[74] S. K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Effect of deposition temperature on the structural and electrical properties of spray deposited kesterite (Cu2ZnSnS4) films, Sol. Energy 122 (2015) 508–516.
[75] T. H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, Cu2ZnSnS4 thin film solar cells with 5.8% conversion efficiency obtained by a facile spray pyrolysis technique, RSC Adv. vol. 5 (2015) 77565–77571.
[76] S. M. Bhosale, M. P. Suryawanshi, M. A. Gaikwad, P. N. Bhosale, J. H. Kim, A. V. Moholkar, Influence of growth temperatures on the properties of photoactive CZTS thin films using a spray pyrolysis technique, Mater. Lett. 129 (2014) 153–155.
[77] P. Prabeesh, I. P. Selvam, S. N. Potty, Effect of annealing temperature on a single step processed Cu2ZnSnS4 thin film via solution method, Thin Solid Films 606 (2016) 94–98.
[78] Z. Wang, R. Gauvin, and G. P. Demopoulos, Nanostructural and photo-electrochemical properties of solution spin-coated Cu2ZnSnS4 –TiO2 nanorod forest films with an improved photovoltaic performance, Nanoscale 9 (2017) 7650–7665.
[79] S. N. Park, S. J. Sung, K. J. Yang, D. H. Kim, K. Y. Cho, J. K. Kang, Effect of Morphology of Solution-Processed Precursor Films on Cu2ZnSnS4 Thin Film Solar Cells, J. Nanosci. Nanotechnol. 16 (2016) 10758–10762.
[80] W. Wang, H. Shen, X. He, J. Li, Effects of sulfur sources on properties of Cu2ZnSnS4 nanoparticles, J. Nanopart. Res. 16 (2014) 2437.
[81] M. Valdes, G. Santoro, M. Vazquez, Spray deposition of Cu2ZnSnS4 thin films, J. Alloys Compd. 585 (2014) 776–782.
[82] J. H. N. Tchognia, Y. Arba, B. Hartiti, A. Ridah, J. M. Ndjaka, P. Thevenin, Effect of sulfurization time on properties of Cu2ZnSnS4 thin films obtained by sol–gel deposited precursors, Opt. Quantum Electron. 48 (2016) 1-7.
[83] Y. Yu, J. Ge, T. Prabhakar, Y. Yan, Effects of spin speed on the properties of spin-coated Cu2ZnSnS4 thin films and solar cells based on DMSO solution, in IEEE Photovoltaic Spec. Conf. 2014 (2014) 0448–0451.
[84] Q. Wu, C. Xue, Y. Li, P. Zhou, W. Liu, J. Zhu, S. Dai, C. Zhu, S. Yang, Kesterite Cu2ZnSnS4 as a Low-Cost Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 7 (2015) 28466–28473.
[85] V. G. Rajeshmon, C. S. Kartha, and K. P. Vijayakumar, Modification of optoelectronic properties of sprayed CZTS thin films through spray rate variation, AIP Conf. Proc. 1591 (2014) 1686–1688.
[86] T. Arai, S. Tajima, S. Sato, K. Uemura, T. Morikawa, T. Kajino, Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer, Chem. Commun. 47 (2011) 12664-12666.
[87] Y. Yang, W. Que, X. Zhang, X. Yin, Y. Xing, M. Que, H. Zhao, Y. Du, High-quality Cu2ZnSnS4 and Cu2ZnSnSe4 nanocrystals hybrid with ZnO and NaYF4:Yb, Tm as efficient photocatalytic sensitizers, Appl. Catal., B 200 (2017) 402–411.
[88] S. S. Shinde, Photocatalytic degradation of RhB and TNT and photocatalytic water splitting with CZTS microparticles, J. Semicond. 36 (2015) 073003.
[89] P. S. Dilsaver, M. D. Reichert, B. L. Hallmark, M. J. Thompson, J. Vela, Cu2ZnSnS4-Au Heterostructures: Toward Greener Chalcogenide-Based Photocatalysts, J. Phys. Chem. C 118 (2014) 21226–21234.
[90] E. Ha, L. Y. S. Lee, J. Wang, F. Li, K. Y. Wong, S. C. E. Tsang, Significant Enhancement in Photocatalytic Reduction of Water to Hydrogen by Au/Cu2ZnSnS4 Nanostructure, Adv. Mater. 26 (2014) 3496–3500.
[91] K. Kim, A. Razzaq, S. Sorcar, Y. Park, C. A. Grimes, S. I. In, Hybrid mesoporous Cu2ZnSnS4 (CZTS) – TiO2 photocatalyst for efficient photocatalytic conversion of CO2 into CH4 under solar irradiation, RSC Adv. 6 (2016) 38964–38971.
[92] S. A. Phaltane, S. A. Vanalakar, T. S. Bhat, P. S. Patil, S. D. Sartale, L. D. Kadam, Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles, J. Mater. Sci.: Mater. Electron. 28 (2017) 8186–8191.
[93] X. Yu, A. Shavel, X. An, Z. Luo, M. Ibanez, and A. Cabot, Cu2ZnSnS4-Pt and Cu2ZnSnS4-Au Heterostructured Nanoparticles for Photocatalytic Water Splitting and Pollutant Degradation, J. Am. Chem. Soc. 136 (2014) 9236–9239.
[94] J. Wang, P. Zhang, X. Song, L. Gao, Cu2ZnSnS4 thin films: spin coating synthesis and photoelectrochemistry, RSC Adv. 4 (2014) 21318-21324.
[95] X. Guo, J. Han, H. Zhang, X. Lv, J. Yan, R. Sun, Sol-gel synthesis of Cu2ZnSnS4 thin films under mild conditions, J. Alloys Compd., 697 (2017) 361–366.
[96] I.G. Orletskyi, M.M Solovan, V.V Brus, F. Pinna, G. Cicero, P.D. Maryanchuk, E.V. Maistruk, M.I. Ilashchuk, T.I Boichuk, E. Tresso, Structural, optical and electrical properties of Cu2ZnSnS4 films prepared from a non-toxic DMSO-based sol-gel and synthesized in low vacuum, J. Phys. Chem. Solids 100 (2017) 154–160.
[97] Z. Su, W. Li, G. Asim, T. Y. Fan, L. H. Wong, Cation substitution of CZTS solar cell with > 10% efficiency, in IEEE Photovoltaic Spec. Conf. 43rd 2016 (2016) 0534–0538.
[98] Y. Yang, X. Kang, L. Huang, S. Wei, D. Pan, A general water-based precursor solution approach to deposit earth abundant Cu2ZnSn(S,Se)4 thin film solar cells, J. Power Sources 313 (2016) 15–20.
[99] L.S. Khanzada, I. Levchuk, Y. Hou, H. Azimi, A. Osvet, R. Ahmad, M. Brandl, P. Herre, M. Distaso, R. Hock, W. Peukert, Effective Ligand Engineering of the Cu2ZnSnS4 Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells, Adv. Funct. Mater. 26 (2016) 8300–8306.
[100] J. Cheng, Z. Dai, B. Chen, R. Ji, X. Yang, R. Hu, J. Zhu, L. Li, Well-Dispersed Cu2ZnSnS4 Nanocrystals Synthesized from Alcohols and Their Applications for Polymer Photovoltaics, Nanoscale Res. Lett. 11 (2016) 550.
[101] S. N. Park, S. J. Sung, K. J. Yang, J. K. Kang, D. H. Kim, Low-Cost Nanoporous Cu2ZnSnS4 Thin-Film Counter Electrode for Dye-Sensitized Solar Cells, J. Nanosci. Nanotechnol. 16 (2016) 10490–10494.