Enhancing Semiconductor-Photocatalytic Organic Transformation through Interparticle Charge Transfer


Category: Tags: , , , , ,

Enhancing Semiconductor-Photocatalytic Organic Transformation through Interparticle Charge Transfer

C. Karunakaran, S. Karuthapandian

Diphenylamine (DPA) is photocatalytically transformed into N-phenyl-p-benzoquinonimine (PBQ) by ZnS nanoparticles and the reaction conforms to Langmuir-Hinshelwood (L-H) kinetics. The kinetic law has been deduced by studying the reaction under different experimental conditions. The kinetic parameters have been evaluated from the obtained results. Particulate ZnS with ZnO or TiO2 or CeO2 or CdO nanoparticles shows enhanced photocatalytic organic transformation. ZnS, ZnO, TiO2, CeO2 and CdO nanoparticles agglomerate in alcoholic medium. Interparticle charge transfer is the likely reason for the enhanced photocatalysis.

ZnS, ZnO, TiO2, CeO2, CdO, Agglomeration

Published online 2/25/2018, 12 pages

DOI: http://dx.doi.org/10.21741/9781945291593-13

Part of Photocatalytic Nanomaterials for Environmental Applications

[1] S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D. Dionysiou, New insights into the mechanism of visible light photocatalysis, J. Phys. Chem. Lett. 5 (2014) 2543-2554. https://doi.org/10.1021/jz501030x
[2] C. Karunakaran, R. Dhanalakshmi, P. Gomathisankar, Semiconductor-photocatalyzed degradation of carboxylic acids: enhancement by particulate semiconductor mixture, Int. J. Chem. Kinet. 41 (2009) 716-726. https://doi.org/10.1002/kin.20444
[3] C. Karunakaran, R. Dhanalakshmi, P. Gomathisankar, G. Manikandan, Enhanced phenol-photodegradation by particulate semiconductor mixtures: interparticle electron jump, J. Hazard. Mater. 176 (2010) 799-806. https://doi.org/10.1016/j.jhazmat.2009.11.105
[4] C. Karunakaran, P. Anilkumar, P. Vinayagamoorthy, Lack of enhanced photocatalytic formation of iodine on particulate semiconductor mixtures, Spectrochim. Acta 98 (2012) 460-465. https://doi.org/10.1016/j.saa.2012.08.079
[5] X. Lang, X. Chen, J. Zhao, Heterogeneous visible light photocatalysis for selective organic transformations, Chem. Soc. Rev. 43 (2014) 473-486. https://doi.org/10.1039/C3CS60188A
[6] G. Palmisano, E. Garcia-Lopez, G. Marci, V. Loddo, S. Yurdakal, V. Augugliaro, L. Palmisano, Advances in selective conversions by heterogeneous photocatalysis, Chem. Commun. 46 (2010) 7074-7089. https://doi.org/10.1039/c0cc02087g
[7] Y. Shiraishi, T. Hirai, Selective organic transformations on titanium oxide-based photocatalysts, J. Photochem. Photobiol. C 9 (2008) 157-170. https://doi.org/10.1016/j.jphotochemrev.2008.05.001
[8] W. Feng, G. Wu, L. Li, N. Guan, Solvent-free selective photocatalytic oxidation of benzyl alcohol over modified-TiO2, Green Chem. 13 (2011) 3265-3272. https://doi.org/10.1039/c1gc15595d
[9] M.-Q. Yang, Y.-J. Xu, Selective photoredox using graphene-based composite photocatalysts, Phys. Chem. Chem. Phys. 15 (2013) 19102-19118. https://doi.org/10.1039/c3cp53325e
[10] N. Zhang, S. Liu, X. Fu, Y.-J. Xu, Fabrication of coenocytic Pd@CdS nanocomposite as a visible light photocatalyst for selective transformation under mild conditions, J. Mater. Chem. 22 (2012) 5042-5052. https://doi.org/10.1039/c2jm15009c
[11] C. Wang, D. Astruc, Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion, Chem. Soc. Rev. 43 (2014) 7188-7216. https://doi.org/10.1039/C4CS00145A
[12] C. Karunakaran, R. Dhanalakshmi, Photocatalytic performance of particulate semiconductors under natural sunshine – oxidation of carboxylic acids, Sol. Energy Mater. Sol. Cells 92 (2008) 588-593. https://doi.org/10.1016/j.solmat.2007.12.009
[13] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev. 110 (2010) 6503-6570. https://doi.org/10.1021/cr1001645
[14] A. Zanella, Control of apple superficial scald and ripening – a comparison between 1-methylcyclopropene and diphenylamine postharvest treatment, initial low oxygen stress and ultra low oxygen storage, Postharvest Biol. Technol. 27 (2003) 69-78. https://doi.org/10.1016/S0925-5214(02)00187-4
[15] T.S. Lin, J. Retsky, ESR studies of photochemical reactions of diphenylamines, phenothiazines, and phenoxazines, J. Phys. Chem. 90 (1986) 2687-2689. https://doi.org/10.1021/j100403a026
[16] Y.C. Chang, P.W. Chang, C.M. Wang, Energetic probing for the electron transfer reactions sensitized by 9,10-dicyanoanthracene and 9-cyanoanthracene and their modified zeolite particle, J. Phys. Chem. B 107 (2003) 1628-1633. https://doi.org/10.1021/jp021852j
[17] C. Karunakaran, S. Karuthapandian, Solar photooxidation of diphenylamine, Sol. Energy Mater. Sol. Cells 90 (2006) 1928-1935. https://doi.org/10.1016/j.solmat.2005.12.003
[18] C. Karunakaran, S. Karuthapandian, Oxidation of diphenylamine on illuminated Fe2O3 surface, Indian J. Chem. A 54 (2015) 356-360.
[19] C. Karunakaran, P. Gomathisankar, G. Manikandan, Solar photocatalytic detoxification of cyanide with bacterial disinfection by oxide ceramics, Indian J. Chem. Technol. 18 (2011) 169-176.
[20] S. Puri, W.R. Bansal, K.S. Sidhu, Benzophenone-sensitized photooxidation of diphenylamine, Indian J. Chem. 11 (1973) 828.
[21] W.R. Bansal, N. Ram, K.S. Sidhu, Reaction of singlet oxygen: Part I – Oxidation of diphenylamine with singlet oxygen (1Δg) produced in situ, Indian J. Chem. B 14 (1976) 123-126.
[22] M.A. Fox, C.C. Chen, Mechanistic features of the semiconductor photocatalyzed olefin-to-carbonyl oxidative cleavage, J. Am. Chem. Soc. 103 (1981) 6757-6759. https://doi.org/10.1021/ja00412a044
[23] C. Karunakaran, P. Anilkumar, P. Gomathisankar, Kinetics of Ag/TiO2-photocatalyzed iodide ion oxidation, Monatsh. Chem. 141 (2010) 529-537. https://doi.org/10.1007/s00706-010-0288-2
[24] C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, Nanostructures and optical, electrical, magnetic and photocatalytic properties of hydrothermally and sonochemically prepared CuFe2O4/SnO2, RSC Adv. 3 (2013) 16728-16738. https://doi.org/10.1039/c3ra41872c
[25] M. Li, M.E. Noriega-Trevino, N. Nino-Martinez, C. Marambio-Jones, J. Wang, R. Damoiseaux, F. Ruiz, E.M.V. Hoek, Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions, Environ. Sci. Technol. 45 (2011) 8989-8995. https://doi.org/10.1021/es201675m
[26] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films, J. Phys. Chem. B 108 (2004) 4818-4822. https://doi.org/10.1021/jp031260g