Synthesis, Characterization and Photocatalytic Study of Sm3+ Doped Mesoporous CeO2 Nanoparticles

$20.00

Synthesis, Characterization and Photocatalytic Study of Sm3+ Doped Mesoporous CeO2 Nanoparticles

N.V. Sajith, J. Sheethu, B.N. Soumya, P. Pradeepan

CeO2 and Sm3+ (2.5, 10 and 15 wt%) doped CeO2 nanoparticles have been synthesized by combining sol-gel and hydrothermal method. Synthesized samples were characterized by using Powder X-Ray Diffraction, FT-IR spectroscopy, X-Ray photoelectron spectroscopy, Transmission Electron Microscopy, UV-visible spectroscopy, TGA/DSC Analysis and BET surface area analysis. XRD pattern showed that as synthesized crystalline structures of CeO2 nanoparticles are cubic fluorite type structure. TEM showed uniform particle size ranges from 10-20 nm and XPS confirmed the successful incorporation of Samarium. CeO2 and Sm3+ doped CeO2 have high surface area and their pore size distribution is in the mesoporous range. Photocatalytic activity of prepared sample was studied using methylene blue (MB) dye degradation. Photocatalytic study showed that 10 wt% Sm3+ doped CeO2 sample has the highest catalytic activity among various sample synthesized.

Keywords
Cerium Dioxide, Photocatalysis, Methylene Blue, Samarium Doped, Dye Degradation

Published online 2/25/2018, 15 pages

DOI: http://dx.doi.org/10.21741/9781945291593-12

Part of Photocatalytic Nanomaterials for Environmental Applications

References
[1] A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis, J. Photochem. Photobiol. A: Chem. 108 (1997) 1-35. https://doi.org/10.1016/S1010-6030(97)00118-4
[2] M. Faisal, M. A. Tariq, M. Muneer, Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania, Dyes Pigm. 72 (2007) 233-9. https://doi.org/10.1016/j.dyepig.2005.08.020
[3] M. M. Rahman, A. Jamal, S. B. Khan, M. Faisal, Characterization and applications of as-grown β-Fe2O3 nanoparticles prepared by hydrothermal method, J Nanopart Res. 13 (2011) 3789-99. https://doi.org/10.1007/s11051-011-0301-7
[4] D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Photocatalysis. A multi-faceted concept for green chemistry, Chem Soc Rev. 38 (2009) 1999-2011. https://doi.org/10.1039/b714786b
[5] S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal Today. 147 (2009) 1-59. https://doi.org/10.1016/j.cattod.2009.06.018
[6] L-Y. Yang, S-Y. Dong, J-H. Sun, J-L. Feng, Q-H. Wu, S-P. Sun, Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst, J. Hazard. Mater. 179 (2010) 438-43. https://doi.org/10.1016/j.jhazmat.2010.03.023
[7] M. Stylidi, D. I. Kondarides, X. E. Verykios, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions, Appl. Catal., B: Environmental. 40 (2003) 271-86. https://doi.org/10.1016/S0926-3373(02)00163-7
[8] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann. Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B: Environmental. 31 (2001) 145-57. https://doi.org/10.1016/S0926-3373(00)00276-9
[9] W. Shen, Z. Li, H. Wang, Y. Liu, Q. Guo, Y. Zhang. Photocatalytic degradation for methylene blue using zinc oxide prepared by codeposition and sol–gel methods, J. Hazard. Mater. 152 (2008) 172-5. https://doi.org/10.1016/j.jhazmat.2007.06.082
[10] S. W. Kim, H-K. Kim, H. W. Choi, D. H. Yoo, E. J. Kim, S. H. Hahn, Photocatalytic Activity of Metal-Inserted WO, Nano sci Nano technol. 13 (2013) 7053-5. https://doi.org/10.1166/jnn.2013.7733
[11] O. M. Ishchenko, V. Rog, G. Lamblin, D. Lenoble, TiO2- and ZnO-Based Materials for Photocatalysis: Material Properties, Device Architecture and Emerging Concepts. In: W Cao, editor. Semiconductor Photocatalysis – Materials, Mechanisms and Applications, InTech (2016). https://doi.org/10.5772/62774
[12] P. Periyat, S.C. Pillai, D. E. McCormack, J. Colreavy, S. J. Hinder. Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2, J. Phys. Chem. C. 112 (2008) 7644-52. https://doi.org/10.1021/jp0774847
[13] [13] Y. Liu, L. Tian, X. Tan, X. Li, X. Chen, Synthesis, properties, and applications of black titanium dioxide nanomaterials, Sci Bull. 62 (2017) 431-41. https://doi.org/10.1016/j.scib.2017.01.034
[14] J. M. Herrmann, Fundamentals and misconceptions in photocatalysis, J Photochem Photobiol A: Chem. 216 (2010) 85-93. https://doi.org/10.1016/j.jphotochem.2010.05.015
[15] W. X. Tang, P. X. Gao, Nanostructured cerium oxide: preparation, characterization, and application in energy and environmental catalysis, MRS Commun. 6 (2016) 311-29. https://doi.org/10.1557/mrc.2016.52
[16] J. Kašpar, P. Fornasiero, M. Graziani, Use of CeO2-based oxides in the three-way catalysis, Catal Today. 50 (1999) 285-98. https://doi.org/10.1016/S0920-5861(98)00510-0
[17] B. C. Steele, Fuel-cell technology: running on natural gas, Nature. 400 (1999) 619-21. https://doi.org/10.1038/23144
[18] B. C. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature. 414 (2001) 345-52. https://doi.org/10.1038/35104620
[19] P. Jasinski, T. Suzuki, H. U. Anderson, Nanocrystalline undoped ceria oxygen sensor, Sens Actuators B: Chem. 95 (2003) 73-7. https://doi.org/10.1016/S0925-4005(03)00407-6
[20] D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen et al. Photocatalytic Degradation of Methyl Orange by CeO2 and Fe–doped CeO2 Films under Visible Light Irradiation, Sci Rep 4 (2014) 5757. https://doi.org/10.1038/srep05757
[21] I. S. Kim, M. Baek, S. J. Choi, Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells, J. Nanosci Nanotechnol. 10 (2010) 3453-8. https://doi.org/10.1166/jnn.2010.2340
[22] B. D. Johnston, T. M. Scown, J. Moger, S. A. Cumberland, M. Baalousha, K. Linge et al. Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish, Environ SciTechnol. 44 (2010) 1144-51. https://doi.org/10.1021/es901971a
[23] P. Periyat, F. Laffir, S. A. M. Tofail, E. A. Magner, facile aqueous sol–gel method for high surface area nanocrystalline CeO2, RSC Adv. 1 (2011) 1794. https://doi.org/10.1039/c1ra00524c
[24] T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation, J. Photochem. Photobiol., A: Chem. 140 (2001) 163-72. https://doi.org/10.1016/S1010-6030(01)00398-7
[25] B. Choudhury, A. Choudhury, Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles, Mater Chem Phys. 131 (2012) 666-71. https://doi.org/10.1016/j.matchemphys.2011.10.032
[26] R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Found. Crystallogr. 32 (1976) 751-67. https://doi.org/10.1107/S0567739476001551
[27] S. B. Khan, M. Faisal, M. M. Rahman, K. Akhtar, A. M. Asiri, A. Khan et al. Effect of particle size on the photocatalytic activity and sensing properties of CeO2 nanoparticles, Int J Electrochem Sci. 8 (2013) 7284-97.
[28] F. Niu, D. Zhang, L. Shi, X. He, H. Li, H. Mai et al. Facile synthesis, characterization and low-temperature catalytic performance of Au/CeO2 nanorods, Mater Lett. 63 (2009) 2132-5.
[29] M. Faisal, S. B. Khan, M. M. Rahman, A. Jamal, K. Akhtar, M. Abdullah, Role of ZnO-CeO2 nanostructures as a photo-catalyst and chemi-sensor, J Mater SciTech. 27 (2011) 594-600.
[30] K. Babitha, A. Sreedevi, K. Priyanka, B. Sabu, T. Varghese. Structural characterization and optical studies of CeO2 nanoparticles synthesized by chemical precipitation, Indian J. Pure Appl. Phys. 53 (2015) 596-603.
[31] M.H. Suzanne, S.K. Ajay, D.T. Ron, S. Nammalwar, S. Sudipta, M.R. Christopher, Anti-inflammatory Properties of Cerium Oxide Nanoparticles, small 5 (2009) 2848–2856. https://doi.org/10.1016/j.matlet.2009.07.021
[32] F-H. Chen, J-L. Her, S. Mondal, M-N. Hung, T-M. Pan, Impact of Ti doping in Sm2O3 dielectric on electrical characteristics of a-InGaZnO thin-film transistors, Appl. Phys. Lett. 102 (2013) 193515-5. https://doi.org/10.1063/1.4807014
[33] X. Chen, L. Liu, Y. Y. Peter, S.S. Mao Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science. 331 (2011) 746-50. https://doi.org/10.1126/science.1200448