Ultrasonic Assisted Synthesis of 2D-Functionalized Grapheneoxide@PEDOT Composite Thin Films and its Application in Electrochemical Capacitors

$20.00

Ultrasonic Assisted Synthesis of 2D-Functionalized Grapheneoxide@PEDOT Composite Thin Films and its Application in Electrochemical Capacitors

P. Ramyakrishna, B. Rajender, G. Sadanandam, P. Srinivas, Inamuddina

Poly(3,4-ethylene dioxythiophene) (PEDOT)@functionalized graphene oxide (FGO) hydrogel thin films were fabricated by simple sonochemical polymerization of EDOT with 1 wt% of FGO. The unique properties of the composites were investigated by FT-infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, cyclic voltammetry and impedance analysis. The potential utility of synthesized composites as electrodes for high-performance supercapacitors has been assessed. Sulfonated graphene oxide (SFGO)-PEDOT showed higher electrochemical performance and long-durability than that of carboxyl functionalized graphene oxide (CFGO)-PEDOT composite and pristine PEDOT. This composite satisfied the prerequisite of elongated cycle life mandatory for a capacitive energy storage device system.

Keywords
Functionalized GO, PEDOT Composite, Two-dimensional, High-performance Supercapacitor Device, Eco-friendly

Published online 2/25/2018, 14 pages

DOI: http://dx.doi.org/10.21741/9781945291579-4

Part of Electrochemical Capacitors

References
[1] E.T. Mombeshora, V.O. Nyamori, A review on the use of carbon nanostructured materials in electrochemical capacitors, Int. J. Energy Res. 39 (2015) 1955-1980. https://doi.org/10.1002/er.3423
[2] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources 91 (2000) 37-50. https://doi.org/10.1016/S0378-7753(00)00485-7
[3] JR. Miller, P. Simon, Electrochemical capacitors for energy management, Science 321 (2008) 651-652. https://doi.org/10.1126/science.1158736
[4] C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, J.J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539. https://doi.org/10.1039/C5CS00303B
[5] J. Wang, S. Dong, B. Ding, Y. Wang, X. Hao, H. Dou, Y. Xia, X. Zhang, Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization, Natl. Sci. Rev. 0 (2016) 1-20. https://doi.org/10.1093/nsr/nww072
[6] H.J. Kim, M. Osada, T. Sasaki, Advanced capacitor technology based on two-dimensional nanosheets, Jpn. J. Appl. Phys. 55 (2016) 1102A3. https://doi.org/10.7567/JJAP.55.1102AA
[7] M. Shao, R. Zhang, Z. Li, M. Wei, D.G. Evans, X. Duan, Layered double hydroxides toward electrochemical energy storage and conversion: design, synthesis and applications, Chem. Commun. 51 (2015) 15880-15893. https://doi.org/10.1039/C5CC07296D
[8] D. Sharma, S. Kanchi, M.I. Sabela, K. Bisetty, Insight into the biosensing of graphene oxide: present and future prospects, Arabian J. Chem. 9 (2016) 238-261. https://doi.org/10.1016/j.arabjc.2015.07.015
[9] H.S. Fan, H. Wang, N. Zhao, J. Xu, F. Pan, Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance, Sci. Rep. 4 (2014) 7426-7427. https://doi.org/10.1038/srep07426
[10] I. Cha, E.J. Lee, H.S. Park, J.H. Kim, Y.H. Kim, C. Song, Facile electrochemical synthesis of polydopamine-incorporated graphene oxide/PEDOT hybrid thin films for pseudocapacitive behaviors, Synth. Met. 195 (2014) 162-166. https://doi.org/10.1016/j.synthmet.2014.05.019
[11] M. Wang, R. Jamal, Y. Wang, L. Yang, F.F. Liu, T. Abdiryim, functionalization of graphene oxide and its composite with poly(3,4-ethylenedioxythiophene) as electrode material for supercapacitors, Nanoscale Res. Lett. 10 (2015) 370. https://doi.org/10.1186/s11671-015-1078-x
[12] K. Zhang, X. Duan, X. Zhu, D. Hu, J. Xu, L. Lu, Nanostructured graphene oxide–MWCNTs incorporated poly(3,4-ethylenedioxythiophene) with a high surface area for sensitive determination of diethylstilbestrol, Synth. Met. 195 (2014) 36-43. https://doi.org/10.1016/j.synthmet.2014.05.005
[13] M. Islam, D. Cardillo, T. Akhter, S.H. Aboutalebi, H.K. Liu, K. Konstantinov, S.X. Dou, Liquid-crystal-mediated self-assembly of porous α-Fe2O3nanorods on PEDOT:PSS functionalized graphene as a flexible ternary architecture for capacitive energy storage, Part. Part. Syst. Charact. 33 (2016) 27-37. https://doi.org/10.1002/ppsc.201500150
[14] J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X.Tao, C. Zhi, H. Hu, A high performance fiber-shaped PEDOT@MnO2//C@Fe3O4 asymmetric supercapacitor for wearable electronics, J. Mater. Chem. A. 4 (2016) 14877-14883. https://doi.org/10.1039/C6TA05898A
[15] Y. Liu, R. Deng, Z. Wang, H. Liu, Carboxyl-functionalized graphene oxide–polyaniline composite as a promising supercapacitor material, J. Mater. Chem. 22 (2012) 13619-13624. https://doi.org/10.1039/c2jm32479b
[16] J. Lu, W. Liu, H. Ling, J. Kong, G. Ding, D. Zhou, X. Lu, Layer-by-layer assembled sulfonated-graphene/polyaniline nanocomposite films: enhanced electrical and ionic conductivities, and electrochromic properties, RSC Adv. 2 (2012) 10537-10543. https://doi.org/10.1039/c2ra21579a
[17] C. Bora, J. Sharma, S. Dolui, Polypyrrole/sulfonated graphene composite as electrode material for supercapacitor, J. Phys. Chem. C. 118 (2014) 29688-29694. https://doi.org/10.1021/jp511095s
[18] W. Feng, Q. Zhang, Y. Li, Y. Feng, Preparation of sulfonatedgraphene/polyaniline composites in neutral solution for high-performance supercapacitors, J. Solid State Electrochem. 18 (2014) 1127–1135. https://doi.org/10.1007/s10008-013-2369-8
[19] B. Ravi, B. Rajender, S. Palaniappan, Improving the electrochemical performance by sulfonation of polyaniline-graphene-silica composite for high performance supercapacitor, Inter. J. Polym. Mater.Polym.Biomater. 65 (2016) 835-840. https://doi.org/10.1080/00914037.2016.1171221
[20] B. Ravi, B. Rajender, S. Palaniappan, One-step preparation of sulfonated carbon and subsequent preparation of hybrid material with polyaniline salt: a promising supercapacitor electrode material, J. Solid State Electrochem, (2016) 1-10.
[21] V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci. 7 (5) (2014) 1597-1614. https://doi.org/10.1039/c3ee44164d