Theory, Fundamentals and Application of Supercapacitors

$20.00

Theory, Fundamentals and Application of Supercapacitors

B. Saravanakumar, G. Muralidharan, S.Vadivel, D. Maruthamani, M.Kumaravel

Supercapacitors or electrochemical capacitors are electrochemical energy storage devices which have drawn huge attention from the scientific community in recent years due to their compactness and long cyclic stability. Great efforts have been paid to improve the energy density of supercapacitor electrodes. Recent research focuses on synthesis of advanced carbon metals, polymers, and metal oxide based composites which can be used as electrode materials for supercapacitor applications. In this chapter, we focus on the history, recent developments concerning supercapacitors electrode materials, electrolytes and separators that have been widely used in supercapacitor devices. The basic parameters and electrochemical properties of supercapacitors are also summarized. Finally, to achieve high specific capacitance in supercapacitors some perspectives and outlook are proposed.

Keywords
Supercapacitors, Energy Storage, Electrodes, Carbon Materials

Published online 2/25/2018, 21 pages

DOI: http://dx.doi.org/10.21741/9781945291579-1

Part of Electrochemical Capacitors

References
[1] J.R. Miller, P. Simon, Electrochemical capacitors for energy management, Science 321 (2008) 651-652. https://doi.org/10.1126/science.1158736
[2] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (2008) 2930-2946. https://doi.org/10.1002/anie.200702505
[3] B.G. Choi, J. Hong, W.H. Hong, P.T. Hammond, H. Park, Facilitated ion transport in all-solid-state flexible supercapacitors, ACS Nano. 5 (2011) 7205-7213. https://doi.org/10.1021/nn202020w
[4] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854. https://doi.org/10.1038/nmat2297
[5] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci. 3 (2010) 1238-1251. https://doi.org/10.1039/c0ee00004c
[6] Z. Yang, J. Zhang, M. C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical Energy Storage for Green Grid, Chem. Rev. 111 (2011) 3577-3613. https://doi.org/10.1021/cr100290v
[7] D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L.V Saraf, D. Hu, J. Zhang, G.L. Graff, J. Liu, M.A. Pope, I.A. Aksay, Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage, ACS Nano 4 (2010) 1587-1595. https://doi.org/10.1021/nn901819n
[8] B. Zhu, S. Tang, S. Vongehr, H. Xie, X. Meng, Hierarchically MnO2–nanosheet covered Submicrometer-FeCo2O4-tube forest as binder-free electrodes for high energy density all-solid-state supercapacitors, ACS Appl. Mater. 8 (2016) 4762–4770. https://doi.org/10.1021/acsami.5b11367
[9] D. Gong, J. Zhu, B. Lu, RuO2@Co3O4 heterogeneous nanofibers: a high-performance electrode material for supercapacitors, RSC Adv. 6 (2016) 49173–49178. https://doi.org/10.1039/C6RA04884F
[10] H. Aruga, K. Hiratsuka, T. Morimoto, Y. Sanada, U. S. Patent 4, 725, 927 A (1988).
[11] S. Razoumov, A. Klementov, S. Litvinenko, A. Beliakov, U.S. Patent 6, 222,723 B1 (2001).
[12] Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem. Soc. Rev. 45 (2016) 5925–5950. https://doi.org/10.1039/C5CS00580A
[13] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano. Lett. 10 (2008) 3498-3502. https://doi.org/10.1021/nl802558y
[14] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density, Nano Lett. 10 (2010) 4863-4868. https://doi.org/10.1021/nl102661q
[15] M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage, Nat. Commun. (2013) 1475. https://doi.org/10.1038/ncomms2446
[16] N. Choudhary, C. Li, H.K. Chung, J. Moore, J. Thomas, Y. Jung, High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers, ACS Nano. 10 (2016) 10726-10735. https://doi.org/10.1021/acsnano.6b06111
[17] B. Akinwolemiwa, C. Peng, George Z. Chen. Redox electrolytes in supercapacitors, J. Electrochem. Society. 162 (2015) 5054-5059. https://doi.org/10.1149/2.0111505jes
[18] Z. Zeng, D. Wang, J. Zhu, F. Xiao, Y. Li, X. Zhu, NiCo2S4 nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors, Cryst. Eng. Comm. 18 (2016) 2363–2374. https://doi.org/10.1039/C6CE00319B
[19] G. Gouy, Constitution of the electric charge at the surface of an electrolyte, J. Phys. Radium. 9 (1910) 457-467.
[20] G. Gouy, constitution of the electric charge at the surface of an electrolyte, Compt. Rend. 149 (1910) 654-657.
[21] D.L. Chapman, LI. A contribution to the theory of electrocapillarity, Phil. Mag. 25 (1913) 475-481. https://doi.org/10.1080/14786440408634187
[22] H. O. Stern, Zur theorie der elektrolytischen doppelschicht, Z. Anorg. Allg. Chem. 30 (1924) 508-516.
[23] D.C. Grahame, The electrical double layer and the theory of electrocapillarity, Chem. Rev. 41 (1947) 441-501. https://doi.org/10.1021/cr60130a002
[24] J. O. M. Bockris, M. A. V. Devanathan, K. Muller, On the structure of charged interfaces, Proc. Roy. Soc. A 274 (1963) 55. https://doi.org/10.1098/rspa.1963.0114
[25] A. Laheaar, S. Delpeux-Ouldriane, E. Lust, F. Beguin, Ammonia treatment of activated carbon powders for supercapacitor electrode application, J. Electrochem. Soc. 161 (2014) A568-A575. https://doi.org/10.1149/2.051404jes
[26] G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang, F, Wei, Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors, Nano Res. 4 (2011) 870-881. https://doi.org/10.1007/s12274-011-0143-8
[27] X. Li, C.Han, X. Chen, C. Shi, Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes, Micropor and Mesopor. Mater. 131 (2010) 303-309. https://doi.org/10.1016/j.micromeso.2010.01.007
[28] A. Alonso, V. Ruiz, C. Blanco, R. Santamaría, M. Granda, R. Menéndez, S.G.E. de Jager, Activated carbon produced from Sasol-Lurgigasifier pitch and its application as electrodes in supercapacitors, Carbon 44 (2006) 441-446. https://doi.org/10.1016/j.carbon.2005.09.008
[29] T. Chen, L. Dai, Carbon nanomaterials for high-performance supercapacitors, Nanotoday 16 (2013) 272-280. https://doi.org/10.1016/j.mattod.2013.07.002
[30] A.G. Gomez, P. Miles, T.A. Centeno, J.M. Rojo, Uniaxially oriented carbon monoliths as supercapacitor electrodes, Electro. Chim. Acta 55 (2010) 8539-8544. https://doi.org/10.1016/j.electacta.2010.07.072
[31] E.G. Calvo, C.O. Ania, L. Zubizarreta, J.A. Menendez, A. Arenillas, Exploring new routes in the synthesis of carbon xerogels for their application in electric double-layer capacitors, Energy & Fuels 24 (2010) 3334-3339. https://doi.org/10.1021/ef901465j
[32] S. He, W. Chen, 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance, Nanoscale 7 (2015) 6957–6990. https://doi.org/10.1039/C4NR05895J
[33] M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors, J. Power Sources. 195 (2010) 7880-7903. https://doi.org/10.1016/j.jpowsour.2010.06.036
[34] J. Li, X. Wang, Q. Huang, S. Gamboa, P.J. Sebastian, Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor, J. Power Sources 158 (2006) 784-788. https://doi.org/10.1016/j.jpowsour.2005.09.045
[35] J. Biener, M. Stadermann, M. Suss, M.A. Worsley, M.M. Biener, K.A. Rose, T.F. Baumann, Advanced carbon aerogels for energy applications, Energy Environ. Sci. 4 (2011) 656-667. https://doi.org/10.1039/c0ee00627k
[36] L. Wang, D. Wang, X.Y. Dong, Z.J. Zhang, X.F. Pei, X.J. Chen, B. Chen, J. Jin, Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors, Chem. Commun. 47 (2011) 3556–3558. https://doi.org/10.1039/c0cc05420h
[37] S. Sepehri , B.B. Garcıa, Q. Zhang, G. Cao, Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen, Carbon 47 (2009) 1436-1443. https://doi.org/10.1016/j.carbon.2009.01.034
[38] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: Designing functional materials to improve performance, Energy Environ. Sci. 3 (2010) 1238-1251. https://doi.org/10.1039/c0ee00004c
[39] J. Yu, W. Lu, S. Pei, K. Gong, L. Wang, L. Meng, Y. Huang, J.P. Smith, K.S. Booksh, Q. Li, J.H. Byun, Y. Oh, Y. Yan, T.W. Chou, Omni directionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films, ACS Nano 10 (2016)5204-5211. https://doi.org/10.1021/acsnano.6b00752
[40] A.I. Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density, Adv. Mater. 22 (2010) 235-241. https://doi.org/10.1002/adma.200904349
[41] R.N.A.R. Seman, M.A. Azam, A.A. Mohamad, Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors, Renew. Sustain. Energ. Rev. 75 (2016) 644-659. https://doi.org/10.1016/j.rser.2016.10.078
[42] S.K. Simotwo, C. DelRe, V. Kalra, Supercapacitor electrodes based on high-purity electrospunpolyaniline and polyaniline–carbon nanotube nanofibers, ACS Appl. Mater. Interfaces 8 (2016) 21261-21269. https://doi.org/10.1021/acsami.6b03463
[43] M.V. Kiamahalleh, S.H.S. Zein, G. Najafpour, S. Buniran, Multiwalled carbon nanotubes based nanocomposites for supercapacitors: a review of electrode materials, NANO: Brief Rep. Rev. 7 (2012) 1230002. https://doi.org/10.1142/S1793292012300022
[44] W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review, J. Phys. Chem. C. 120 (2016) 4153-4172. https://doi.org/10.1021/acs.jpcc.5b10187
[45] J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai, L. Li, Metallic fabrics as the current collector for high-performance graphene-based flexible solid-state supercapacitor, ACS App. Mater. Interfaces 8 (2016) 4724-4729. https://doi.org/10.1021/acsami.5b12180
[46] C. Zhu, T. Liu, F. Qian, T.Y.J. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores, Nano Lett. 16 (2016) 3448-3456. https://doi.org/10.1021/acs.nanolett.5b04965
[47] E.D. Walsh, X. Han, S.D. Lacey, J.W. Kim, J.W. Connell, L. Hu, Y. Lin, Dry-processed, binder-free holey graphene electrodes for supercapacitors with ultrahigh areal loadings, ACS App. Mater. Interfaces 43 (2016) 29478-29485. https://doi.org/10.1021/acsami.6b09951
[48] Y.Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu, Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes, J. Mater. Chem. A. 2 (2014) 6086-6091. https://doi.org/10.1039/C4TA00484A
[49] P. R. Deshmukh, S.N. Pusawale, N.M. Shinde, C.D. Lokhande, Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method, J. Korean. Phy. Soc. 65 (2014) 80-86. https://doi.org/10.3938/jkps.65.80
[50] T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong, Y. Li, Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability, Nano Lett. 14 (2014) 2522-2527. https://doi.org/10.1021/nl500255v
[51] N. Kurra, J. Park, H.N. Alshareef, A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper, J. Mater. Chem. A 2 (2014) 17058-17065. https://doi.org/10.1039/C4TA03603D
[52] T. Kobayashi, H. Yoneyama, H. Tamura, Electrochemical reactions concerned with electrochromism of polyaniline film-coated electrodes, J. Electroanal. Chem. 177 (1984) 281-291. https://doi.org/10.1016/0022-0728(84)80229-6
[53] Z. Peng, X. Liu, H. Meng, Z. Li, B. Li, Z. Liu, S. Liu, Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors, ACS Appl. Mater. Interfaces 9 (2017) 4577-4586. https://doi.org/10.1021/acsami.6b12532
[54] C.C. Hu, C.W. Wang, K.H. Chang, M.G. Chen, Anodic composite deposition of RuO2/reduced graphene oxide/carbon nanotube for advanced supercapacitors, Nanotechnology 26 (2015) 274004. https://doi.org/10.1088/0957-4484/26/27/274004
[55] C. Liu, C. Li, K. Ahmed, W. Wang, I. Lee, F. Zaera, C.S. Ozkan, M. Ozkan, Scalable, Binderless, and carbonless hierarchical Ni nanodendrite foam decorated with hydrous ruthenium dioxide for 1.6 V symmetric supercapacitors, Adv. Mater. Interfaces 3 (2016) 1500503. https://doi.org/10.1002/admi.201500503
[56] J. Li, Z. Ren, S. Wang, Y. Ren, Y. Qiu, J. Yu, MnO2 nanosheets grown on internal surface of macroporous carbon with enhanced electrochemical performance for supercapacitors, ACS Sustainable Chem. Eng. 4 (2016) 3641-3648. https://doi.org/10.1021/acssuschemeng.6b00092
[57] K. Xu, X. Zhu, P. She, Y. Shang, H. Sun, Z. Liu, Macroscopic porous MnO2 aerogels for supercapacitor electrodes, Inorg. Chem. Front. 3 (2016) 1043-1047. https://doi.org/10.1039/C6QI00110F
[58] Y. Huang, Y. Huang, W. Meng, M. Zhu, H. Xue, C.S. Lee, C . Zhi, Enhanced tolerance to stretch-induced performance degradation of stretchable MnO2-based supercapacitors, ACS Appl. Mater. Interfaces 7 (2015) 2569-2574. https://doi.org/10.1021/am507588p
[59] R.B. Rakhi, B. Ahmed, D. Anjum, H.N. Alshareef, Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications, ACS Appl. Mater. Interfaces 8 (2016) 18806-18814. https://doi.org/10.1021/acsami.6b04481
[60] M.L.Thai, G. T. Chandran, R.K. Dutta, X. Li, R.M. Penner, 100k cycles and beyond: extraordinary cycle stability for MnO2 nanowires imparted by a gel electrolyte, ACS Energy Lett. 1 (2016) 57-63. https://doi.org/10.1021/acsenergylett.6b00029
[61] S. Nagamuthu, S. Vijayakumar, G. Muralidharan, Biopolymer-assisted synthesis of λ-MnO2 nanoparticles as an electrode material for aqueous symmetric supercapacitor devices, Ind. Eng. Chem. Res. 52 (2013) 18262-18268. https://doi.org/10.1021/ie402661p
[62] G. Godillot, P.L. Taberna, B. Daffos, P. Simon, C. Delmas, L.G. Demourgues, High power density aqueous hybrid supercapacitor combining activated carbon and highly conductive spinel cobalt oxide, J. Power Sources 331 (2016) 277-284. https://doi.org/10.1016/j.jpowsour.2016.09.035
[63] S. Kong, F. Yang, K. Cheng, T. Ouyang, K. Ye, G. Wang, D. Cao, In-situ growth of cobalt oxide nanoflakes from cobalt nanosheet on nickel foam for battery-type supercapacitors with high specific capacity, J. Electroanal. Chem. 785 (2017) 103-108. https://doi.org/10.1016/j.jelechem.2016.12.002
[64] Y. Xu, L. Wang, P. Cao, C. Cai, Y. Fu, M. Xiaohua, Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors, J. Power Sources 306 (2016) 742-752. https://doi.org/10.1016/j.jpowsour.2015.12.106
[65] Y. Ding, W. Bai, J. Sun, Y. Wu, M. A. Memon, C. Wang, C. Liu, Y. Huang, J. Geng, Cellulose tailored anatase TiO2 nanospindles in three-dimensional graphene composites for high-performance supercapacitors, ACS Appl. Mater. Interfaces 8 (2016) 12165-12175. https://doi.org/10.1021/acsami.6b02164
[66] C. Yu, Y. Wang, J. Zhang, X. Shu, J. Cui, Y. Qin, H. Zheng, J. Liu, Y. Zhang, Y. Wu, Integration of mesoporous nickel cobalt oxide nanosheets with ultrathin layer carbon wrapped TiO2 nanotube arrays for high-performance supercapacitors, New J. Chem. 40 (2016) 6881-6889. https://doi.org/10.1039/C6NJ00359A
[67] L.S Aravinda, K.K. Nagaraja, H.S. Nagaraja, K. UdayaBhat, B.R. Bhat, Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2, Nanotechnology 27 (2016) 314001. https://doi.org/10.1088/0957-4484/27/31/314001
[68] K.K. Purushothaman, I. ManoharaBabu, B. Sethuraman, G. Muralidharan, Nanosheet-assembled NiO microstructures for high-performance supercapacitors, ACS Appl. Mater. Interfaces 5 (2013) 10767-10773. https://doi.org/10.1021/am402869p
[69] S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route, ACS Appl. Mater. Interfaces 5 (2013) 2188-2196. https://doi.org/10.1021/am400012h
[70] F. Cao, G.X. Pan, X.H. Xia, P.S. Tang, H.F. Chen, Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application, J. Power Sources 264 (2014) 161-167. https://doi.org/10.1016/j.jpowsour.2014.04.103
[71] P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, Chemical synthesis of Fe2O3 thin films for supercapacitor application, J. Alloys. Compd. 509 (2011) 2567-2571. https://doi.org/10.1016/j.jallcom.2010.11.091
[72] G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan, K.R.V. Subramanian, M.V. Reddy, Shantikumar V. Nair, A. Sreekumaran Nair, N. Sivakumar. Electrospun α-Fe2O3 nanostructures for supercapacitor applications, J. Mater. Chem. A 1 (2013) 11698-11704. https://doi.org/10.1039/c3ta12352a
[73] J. Huang, S.Yang, Y. Xu, X. Zhou, X. Jiang, N. Shi, D. Cao, J. Yin, G. Wang, Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors, J. Electroanal. Chem. 713 (2014) 98-102. https://doi.org/10.1016/j.jelechem.2013.12.009
[74] B. Sethuraman, K.K. Purushothaman, G. Muralidharan, Synthesis of mesh-like Fe2O3/C nanocomposite via greener route for high performance supercapacitors, RSC Adv. 4 (2014) 4631-4637. https://doi.org/10.1039/C3RA45025B
[75] Z. Lu, Z. Chang, W. Zhu, X. Sun, Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance, Chem. Commun. 47 (2011) 9651-9653. https://doi.org/10.1039/c1cc13796d
[76] M. Aghazadeh, A.N. Golikand, M. Ghaemi, Synthesis, characterization, and electrochemical properties of ultrafine β-Ni (OH)2 nanoparticles, Int. J. Hydrogen Energy 36 (2011) 8674-8679. https://doi.org/10.1016/j.ijhydene.2011.03.144
[77] T. Xue, J.M. Lee, Capacitive behavior of mesoporous Co(OH)2 nanowires, J. Power Sources 245 (2014) 194-202. https://doi.org/10.1016/j.jpowsour.2013.06.135
[78] J. Tang, D. Liu, Y. Zheng, X. Li, X. Wang, D. He, Effect of Zn-substitution on cycling performance of α-Co(OH)2 nanosheet electrode for supercapacitors, J. Mater. Chem. A 2 (2014) 2585-2591. https://doi.org/10.1039/c3ta14042c
[79] P. Chen, H. Chen, J. Qiu, C. Zhou. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates, Nano Res. 3 (2010) 594-603. https://doi.org/10.1007/s12274-010-0020-x
[80] G. Xiong, K.P.S.S. Hembram, R.G. Reifenberger, T.S. Fisher, MnO2-coated graphitic petals for supercapacitor electrodes, J. Power Sources 227 (2013) 254-259. https://doi.org/10.1016/j.jpowsour.2012.11.040
[81] W. Tang, Y.Y. Hou, X.J. Wang, Y. Bai, Y.S. Zhu, H. Sun, Y.B. Yue, Y.P. Wu, K. Zhu, R. Holze, A hybrid of MnO2 nanowires and MWCNTs as cathode of excellent rate capability for supercapacitors, J. Power Sources 197 (2012) 330-333. https://doi.org/10.1016/j.jpowsour.2011.09.050
[82] G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie. J.R. McDonough, X. Cui, Y. Cui, ZhenanBao, Nano Lett. 11 (2011) 2905-2911. https://doi.org/10.1021/nl2013828
[83] G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors, Nano Lett. 11 (2011) 2905-2911. https://doi.org/10.1021/nl2013828
[84] R.B. Rakhi, W. Chen, M.N. Hedhili, D. Cha, H.N. Alshareef, enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration, ACS Appl. Mater. Interfaces 6 (2014) 4196-4206. https://doi.org/10.1021/am405849n
[85] J.H. Kim, K.Z.Y. Yan, C.L. Perkins, A.J. Frank, Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays, Nano Lett. 10 (2010) 4099-4104. https://doi.org/10.1021/nl102203s
[86] Y. Yang, D. Kim, M. Yang, P. Schmuki, Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor applications, Chem. Commun. 47 (2011) 7746-7748. https://doi.org/10.1039/c1cc11811k
[87] S. Hou, G. Zhang , W. Zeng, J. Zhu, F. Gong, F. Li, H. Duan, Hierarchical Core–shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors, ACS Appl. Mater. Interfaces 6 (2014) 13564-13570. https://doi.org/10.1021/am5028154
[88] D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li, T. Wang, High-performance supercapacitor electrode based on the unique ZnO@Co3O4 core/shell heterostructures on nickel foam, ACS Appl. Mater. Interfaces 6 (2014) 15905-15912. https://doi.org/10.1021/am5035494
[89] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang. A review of electrolyte materials and compositions for electrochemical supercapacitors, Chem. Soc. Rev. 44 (2015) 7484-7539. https://doi.org/10.1039/C5CS00303B
[90] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors, Adv. Mater. 26 (2014) 2219-2251. https://doi.org/10.1002/adma.201304137
[91] Q.T. Qu, P. Zhang, B. Wang, Y.H. Chen, S. Tian, Y.P. Wu, R.J. Holze, Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, J. Phys. Chem. C 113 (2009) 14020-14027. https://doi.org/10.1021/jp8113094
[92] T. Tsuda, C.L. Hussey, Electrochemical applications of room-temperature ionic liquids, Electrochem. Soc. Inter. 16 (2007) 42-.