Carbonaceous quantum dot composites for the application of electrochemical supercapacitors

$20.00

Carbonaceous quantum dot composites for the application of electrochemical supercapacitors

P. Ramyakrishnaa, B. Rajender, B. Ravi, Inamuddin, M. Farz Ahmar

Carbon quantum dots (CQDs), as novel zero-dimensional (0D) carbon nanomaterials have been attracting attention for their potential as a promising material for energy storage because of their excellent mechanical strength, good electrochemical conductivity, high electron mobilities, excellent chemical/thermal stability, nanometer size and large specific surface areas, all of which are the powerful sources of ideal supercapacitors. This chapter aims to assess the current status of CQDs composites for supercapacitors by discussing the literature in this field and presenting an outlook for future research in this area.

Keywords
Carbon Quantum Dots, Graphene Quantum Dots, Inorganic Materials, Conducting Polymer, Flexible, Symmetric, Asymmetric Capacitors

Published online 1/15/2018, 32 pages

DOI: http://dx.doi.org/10.21741/9781945291531-6

Part of Nanocomposites for Electrochemical Capacitors

References
[1] I.V. Barsukov, C.S. Johnson, J.E. Doninger, V.Z. Barsukov, New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, Springer, 2006, XXIV, 523, Ebook ISBN 978-1-4020-4812-8, https://doi.org/10.1007/1-4020-4812-2
[2] Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: An emerging material for energy-related applications and beyond, Energy Environ. Sci. 5 (2012) 8869–8890. https://doi.org/10.1039/c2ee22982j
[3] J. Shen, Y. Zhu, X. Yang. C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, Chem. Commun. 48 (2012) 3686-3699. https://doi.org/10.1039/c2cc00110a
[4] Y. Wang, A. Hu, Carbon quantum dots: Synthesis, properties and applications, J. Mater. Chem. C 2 (2014) 6921-6939. https://doi.org/10.1039/C4TC00988F
[5] S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications, Chem. Soc. Rev. 44 (2015) 362-381. https://doi.org/10.1039/C4CS00269E
[6] L.M. Shen, J. Liu, New development in carbon quantum dots technical applications, Talanta 156-157 (2016) 245-256. https://doi.org/10.1016/j.talanta.2016.05.028
[7] W.W. Liu, Y.Q. Feng, X.B. Yan, J.T. Chen, Q.J. Xue, Superior micro-supercapacitors based on graphene quantum dots, Adv. Funct. Mater. 23 (2013) 4111-4122. https://doi.org/10.1002/adfm.201203771
[8] Y. Hu, Y. Zhao, G. Lu, N. Chen, Z. Zhang, H. Li, H. Shao, L. Qu, Graphene quantum dots–carbon nanotube hybrid arrays for supercapacitors, Nanotechnology 24 (2013) 195401. https://doi.org/10.1088/0957-4484/24/19/195401
[9] Q.Chen, Y. Hu, C. Hu, H. Cheng, Z. Zhang, H. Shao, L. Qu, Graphene quantum dots–three-dimensional graphene composites for high-performance supercapacitors, Phys. Chem. Chem. Phys. 16 (2014) 19307-19313. https://doi.org/10.1039/C4CP02761B
[10] L. Lv, Y. Fan, Q. Chen, Y. Zhao, Y. Hu, Z. Zhang, N. Chen, L. Qu, Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors, Nanotechnology 25 (2014) 235401. https://doi.org/10.1088/0957-4484/25/23/235401
[11] G. Chen, S. Wu, L. Hui, Y. Zhao, J. Ye, Z. Tan, W. Zeng, Z. Tao, L. Yang, Y. Zhu, Assembling carbon quantum dots to a layered carbon for high-density supercapacitor electrodes, Sci. Rep. 6 (2016) 19028. https://doi.org/10.1038/srep19028
[12] A.K. Samantara, S.C. Sahu, A. Ghosh, B.K. Jena, Sandwiched graphene with nitrogen, sulphur codoped CQDs: An efficient metal-free material for energy storage and conversion applications, J. Mater. Chem. A 3 (2015) 16961-16970. https://doi.org/10.1039/C5TA03376D
[13] Y.Q. Dang, S.Z. Ren, G. Liu, J. Cai, Y. Zhang, J. Qiu, Electrochemical and capacitive properties of carbon dots/reduced graphene oxide supercapacitors, Nanomaterials 6 (2016) 1-12. https://doi.org/10.3390/nano6110212
[14] K. Lee, H. Lee, Y. Shin, Y. Yoon, D. Kim, H. Lee, Highly transparent and flexible supercapacitors using graphene-graphene quantum dots chelate, Nano Energy 26 (2016) 746-754. https://doi.org/10.1016/j.nanoen.2016.06.030
[15] Y. Zhu, X. Ji, C. Pan, Q. Sun, W. Song, L. Fang, Q. Chen, C. E. Banks, A carbon quantum dot decorated RuO2 network: Outstanding supercapacitances under ultrafast charge and discharge, Energy Environ. Sci. 6 (2013) 3665-3675. https://doi.org/10.1039/c3ee41776j
[16] Y. Zhu, Z. Wu, M. Jing, H. Hou, Y. Yang, Y. Zhang, X. Yang, W. Song, X. Jia, X. Ji, Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor, J. Mater. Chem. A 3 (2015) 866-877. https://doi.org/10.1039/C4TA05507A
[17] J. Xu, Y. Xue, J. Cao, G. Wang, Y. Li, W. Wang. Z. Chen, The carbon quantum dots/nickel oxide (CQDs/NiO) nanorods with high capacitance for supercapacitor, RSC Adv. 6 (2016) 5541-5546. https://doi.org/10.1039/C5RA24192H
[18] B. Unnikrishnan, C.-W. Wu, I-W. P. Chen, H.-T. Chang, C.-H. Lin, C.-C. Huang, Carbon dot-mediated synthesis of manganese oxide decorated graphene nanosheets for supercapacitor application, ACS Sustainable Chem. Eng. 4 (2016) 3008-3016. https://doi.org/10.1021/acssuschemeng.5b01700
[19] K. Bhattacharya, P. Deb, Hybrid nanostructured C-dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance, Dalton Trans. 44 (2015) 9221-9229. https://doi.org/10.1039/C5DT00296F
[20] J.-S. Wei, H. Ding, P. Zhang, Y.-F. Song, J. Chen, Y.-G. Wang, H.-M. Xion, Carbon dots/NiCo2O4 nanocomposites with various morphologies for high-performance supercapacitors, Small 12 (2016) 5927-5934. https://doi.org/10.1002/smll.201602164
[21] J. Xu, Y. Xue, J. Cao, G. Wang, Y. Li, W. Wang, Z. Chen, Carbon quantum dots/Ni–Al layered double hydroxide composite for high-performance supercapacitors, RSC Adv. 6 (2016) 39317-39322. https://doi.org/10.1039/C6RA02730J
[22] B. De, J. Balamurugan, N.H. Kim, J.H. Lee, Enhanced electrochemical and photocatalytic performance of core-shell CuS@Carbon Quantum Dots@Carbon hollow nanospheres, ACS Appl. Mater. Interfaces 9 (2017) 2459-2468. https://doi.org/10.1021/acsami.6b13496
[23] W. Liu, X. Yan, J. Chen, Y. Feng, Q. Xue, Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers, Nanoscale 5 (2013) 6053-6062. https://doi.org/10.1039/c3nr01139a
[24] S. Mondal, U. Rana S. Malik, Graphene quantum dot-doped polyaniline nanofiber as high performance supercapacitor electrode materials, Chem. Commun. 51 (2015) 12365-12368. https://doi.org/10.1039/C5CC03981A
[25] Y. Xie, H. Du, Electrochemical capacitance of a carbon quantum dots–polypyrrole/titania nanotube hybrid, RSC Adv. 5 (2015) 89689-89697. https://doi.org/10.1039/C5RA16538E
[26] X. Jian, H. Yang, J. Li, E. Zhang, L. Cao, Z. Liang, Flexible all-solid-state high-performance supercapacitor based on electrochemically synthesized carbon quantum dots/polypyrrole composite electrode, Electrochimica Acta 228 (2017) 483-493. https://doi.org/10.1016/j.electacta.2017.01.082
[27] X. Jian, J. Li, H. Yang, L. Cao, E. Zhang, Z. Liang, Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors, Carbon 114 (2017) 533-543. https://doi.org/10.1016/j.carbon.2016.12.033
[28] Z. Zhao, Y. Xie, Enhanced electrochemical performance of carbon quantum dots-polyaniline hybrid, J. Power Sourc. 337 (2017) 54-64. https://doi.org/10.1016/j.jpowsour.2016.10.110
[29] X. Zhang, J. Wang, J. Liu, J. Wu, H. Chen, H. Bi, Design and preparation of a ternary composite of graphene oxide/carbon dots/polypyrrole for supercapacitor application: Importance and unique role of carbon dots, Carbon 115 (2017) 134-146. https://doi.org/10.1016/j.carbon.2017.01.005