Green sonochemical synthesis of conducting polymer/RuO2 composite granules as an efficient electrode for supercapacitor applications

$20.00

Green sonochemical synthesis of conducting polymer/RuO2 composite granules as an efficient electrode for supercapacitor applications

P. Ramyakrishna, B. Rajender, A. Saran, M.F. Ahmer, Inamuddin

A simple and efficient sonochemical method for synthesis of conducting polymers such as polyaniline (PANI), poly(3,4-ethylenedioxy thiophene) (PEDOT), polypyrrole (PPY)/ruthenium dioxide (RuO2) nanocomposites in which RuO2 are uniformly deposited on the surface of the conducting polymer have been developed. Hydrous ruthenium oxide in low quantity (10 wt% with respect to monomer) was introduced to the conducting polymer in order to improve the pseudocapacitance properties and cycle durability. Among these, PANI-RuO2 composite shows excellent capacitance (670 F g-1) and retained 89% of capacitance after 10,000 galvanostatic charge-discharge cycles with a coulombic efficiency of 98-100% at a current density of 1 A g-1, energy density of 31.6 Wh kg-1 and power density of 600 W kg-1. This composite fulfilled the requirement of long durability necessary for an energy storage system.

Keywords
Conducting Polymer, RuO2, Supercapacitor, Button Cell, Spherical Granular Morphology

Published online 1/15/2018, 15 pages

DOI: http://dx.doi.org/10.21741/9781945291531-3

Part of Nanocomposites for Electrochemical Capacitors

References
[1] X. Zhao, B.M. Sanchez, P.J. Dobson, P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next-generation energy storage devices, Nanoscale 3 (2011) 839-855. https://doi.org/10.1039/c0nr00594k
[2] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy 34 (2009) 4889-4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
[3] C. Lin, J.A. Ritter, B.N. Popov, Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels, J. Electrochem. Soc. 146 (1999) 3155-3160. https://doi.org/10.1149/1.1392448
[4] J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, H. Fang, Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor, J. Electrochem. Soc. 148 (2001) A1362-A1367. https://doi.org/10.1149/1.1417976
[5] W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage, Angew. Chemie Int. Ed. 42 (2003) 4092-4096. https://doi.org/10.1002/anie.200351691
[6] C.C. Hu, W.C. Chen, K.H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151 (2004) A281-A290. https://doi.org/10.1149/1.1639020
[7] J.S. Ye, H. Cui, X. Liu, T. Lim, W.D. Zhang, F.S. Sheu, Preparation and characterization of aligned carbon nanotube–ruthenium oxide nanocomposites for supercapacitors, Small 1 (2005) 560-565. https://doi.org/10.1002/smll.200400137
[8] Y. Zhou, B. He, W. Zhou, J. Huang, X. Li, B. Wu, H. Li, Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites, Electrochim. Acta 49 (2004) 257-262. https://doi.org/10.1016/j.electacta.2003.08.007
[9] J.H. Park, J.M. Ko, O.O. Park, D.W. Kim, Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber, J. Power Sources 105 (2002) 20-25. https://doi.org/10.1016/S0378-7753(01)00915-6
[10] R.Y. Song, J.H. Park, S.R. Sivakkumar, S.H. Kim, J.M. Ko, D.Y. Park, S.M. Jo, D.Y. Kim, Supercapacitive properties of polyaniline/Nafion/ hydrous RuO2 composite electrodes, J. Power Sources 166 (2007) 297-301. https://doi.org/10.1016/j.jpowsour.2006.12.093
[11] B. Ravi,. B. Rajender, S. Palaniappan, Synthesis of highly crystalline polyaniline with the use of (Cyclohexylamino)-1-propanesulfonic acid for supercapacitor, J. Appl. Electrochem. 45 (2015) 51-56. https://doi.org/10.1007/s10800-014-0753-4
[12] B. Rajender, S. Palaniappan, Role of dual dopants to highly ordered crystalline polyaniline nanospheres: Electrode material in supercapacitor, J. Appl. Polym. Sci. 132 (2015) 42510 (1-7).
[13] B. Rajender, S. Palaniappan, Simultaneous oxidation and doping of aniline to polyaniline by oxidative template: Electrochemical performance in supercapacitor, Int. J. Polym. Mater. 64 (2015) 939-945. https://doi.org/10.1080/00914037.2015.1038814
[14] B. Rajender, S. Palaniappan, Organic solvent soluble methyltriphenyl phosphonium peroxodisulfate: A novel oxidant for the synthesis of polyaniline and thus prepared polyaniline in high performance supercapacitor, New J. Chem. 39 (2015) 5382-5388. https://doi.org/10.1039/C5NJ00979K
[15] J. Mink, J. Kristóf, A. De Battisti, S. Daolio, C. Németh, Investigation on the formation of RuO2-based mixed oxide coatings by spectroscopic methods, Surf. Sci. 335 (1995) 252-257. https://doi.org/10.1016/0039-6028(95)00439-4
[16] Z. Xiao, X. Jiang, B. Li, X. Liu, X. Huang, Y. Zhang, Q. Ren, J. Luo, Z. Qin, J. Hu, Hydrous RuO2 nanoparticles as an efficient NIR-light induced photo thermal agent for ablation of cancer cells in vitro and in vivo, Nanoscale 7 (2015) 11962-11970. https://doi.org/10.1039/C5NR00965K