Smart Polymeric Coatings to Enhance the Antibacterial, Anti-fogging and Self-Healing Nature of a Coated Surface

$15.95

Smart Polymeric Coatings to Enhance the Antibacterial, Anti-fogging and Self-Healing Nature of a Coated Surface

Santanu Sarkar, Chiranjib Bhattacharjee, Supriya Sarkar

All surface modifications are mainly done to improve different properties e.g. antibacterial, anti-fogging, self-healing etc. of a surface. By definition ‘smart coating’ is a type of coating which has such special properties. The current chapter deals with three special characteristics of such smart coatings. Antibacterial coatings make the surface immune to living microorganisms and thus the growth of bacteria on such coated surface becomes restricted. In the case of self-healing coatings, the surface is protected from a corrosive environment and moreover, if the coating is damaged due to some reason self-repair mechanism prevents the exposed surface from any type of attack. Finally, anti-fogging coatings enhance the hydrophilic nature of the coated surface as well as reduce any light penetration problem through the surface by preventing water droplet formation on the coated surface in moist weather. All types of coatings have a large amount of applications in different fields of science as well as in our daily lives. This chapter has also highlighted several aspects and applications of different types of smart coatings.

Keywords
Smart Coating, Antibacterial Coating, Anti-fogging Coating, Self-Healing Coating, Surface Modification

Published online 1/2/2018, 46 pages

DOI: http://dx.doi.org/10.21741/9781945291470-3

Part of Smart Polymers and Composites

References
[1] R. Gradinger, R. Graf, J. Grifka, J. Löhr, Das infizierte implantat, Der. Orthopäde, 3 (2008) 257-269.
[2] M, Hellmann, S.D. Mehta, D.M. Bishai, S.C. Mears, J.M. Zenilman. The estimated magnitude and direct hospital costs of prosthetic joint infections in the United States, 1997 to 2004, J. Athroplast., 25 (2010) 766-771. https://doi.org/10.1016/j.arth.2009.05.025
[3] M.F. Sampredo, R. Patel, Infections associated with long-term prosthetic devices, Infect. Dis. Clin. N. Am., 21 (2007), 785-819. https://doi.org/10.1016/j.idc.2007.07.001
[4] A.J. Tokarczyk, S.B. Greenberg, J.S. Vender, Death, dollars, and diligence: Prevention of catheter-related bloodstream infections must persist, Crit. Care Med., 37 (2009) 2320-2321. https://doi.org/10.1097/CCM.0b013e3181a9efa9
[5] C. Von eiff, B. Jansen, W. Kohnen, K. Becker, Infections associated with medical devices, Drugs, 65 (2005) 179-214. https://doi.org/10.2165/00003495-200565020-00003
[6] J.D. Turnidge, D. Kotsanas, W. Munckhof, S. Roberts, C.M. Bennett, G.R. Nimmo, G.W. Coombs, R.J. Murray, B. Howden, P.D.R. Johnson, K. Dowling, Staphylococcus aureus bacterimia: a major cause of mortality in Australia and New Zealand, Med. J. Aust., 191 (2009) 368-373.
[7] M.A. Olsen, S. Chu-Ongsakul, K.E. Brandt, J.R. Dietz, J. Mayfeld, V.J. Fraser, Horpital-associated costs due to surgical site infection after breast surgery, Arch. Surg., 143 (2008) 53-60. https://doi.org/10.1001/archsurg.2007.11
[8] S. Noimark, C.W. Dunnill, M. Wilson, I.P. Parkin, The role of surfaces in catheter-associated infections, Chem. Soc. Rev., 38 (2009) 3435-3448. https://doi.org/10.1039/b908260c
[9] B.W. Trautner, R.O. Darouiche, Catheter-associated infections, Arch. Intern. Med.,164 (2004) 842-850. https://doi.org/10.1001/archinte.164.8.842
[10] A. David, D.C. Risitano, G. Mazzeo, L. Sinardi, F.S. Venuti, A.U. Sinardi, Central venous catheters and infections, Minerva. Anestesiol., 71 (2005) 561-564.
[11] K. Halton, N. Graves, Economic evaluation and catheter-related bloodstream infections, Emerg. Infect. Dis., 13 (2007) 815-823. https://doi.org/10.3201/eid1306.070048
[12] E.N. Prencevich, D. Pittet, Preventing catheter-related bloodstream infections, J. Am. Med. Assoc., 301(2009) 1285-1287. https://doi.org/10.1001/jama.2009.420
[13] W. Zingg, A. Imhof, M. Maggiorini, R. Stocker, E. Keller, C. Ruef., Impact of a prevention strategy targeting hand hygiene and catheter care on the incidence of catheter-related bloodstream infections, Crit. Care. Med., 37 (2009) 2167-2173. https://doi.org/10.1097/CCM.0b013e3181a02d8f
[14] A.J. Kallen, P.R. Patel, N.P. O’Grady, Preventing catheter-related bloodstream infections outside the intensive care unit: Expanding to new settings, Healthcare Epidem., 51 (2010) 335-341. https://doi.org/10.1086/653942
[15] J.M. Walz, S.G. Memtsoudis, S.O. Heard, Prevention of central venous catheter bloodstream infections, J. Intensive. Care. Med., 25 (1997) 131-138. https://doi.org/10.1177/0885066609358952
[16] B. A¨ıssa, D. Therriault, E. Haddad, W. Jamroz, Self-Healing Materials Systems: Overview of Major Approaches and Recent Developed Technologies, Adv. Mater. Sci. Eng., 2012 (2012) 1-17. https://doi.org/10.1155/2012/854203
[17] V.D. Rosenthal, D.G. Maki, N. Graves, The international nosocomical infection control consortium (INICC): Goals and objectives, description of surveillance methods, and operational activities, Am. J. Infect. Control., 36 (2008) e1-e12. https://doi.org/10.1016/j.ajic.2008.06.003
[18] G.M.L. Bearman, C. Munro, C. N. Sessler, R.P. Wenzel, Infection control and the prevention of nosocomical infections in the intensive care unit, Sem. Resp. Crit. Care. Med., 27 (2006) 310-324. https://doi.org/10.1055/s-2006-945534
[19] W.T. Youg, How to respond to changes in the regulation of the ethylene-oxide sterilization process, Med. Dev. Technol., 17 (2006) 12-15.
[20] P. Thevenot, W. Hu, L. Tang, Surface chemistry influences implant biocompatibility, Curr. Top. Med. Chem., 8 (2008) 270-280. https://doi.org/10.2174/156802608783790901
[21] H. Stutz, Protein attachment onto silica surfaces—A survey of molecular fundamentals, resulting effects and novel preventive strategies in CE, Electrophoresis, 30 (2009) 2032-2061. https://doi.org/10.1002/elps.200900015
[22] F. Ganazzoli, G. Raffaini, Computer simulation of polypeptide adsorption on model biomaterials, Phys. Chem. Chem. Phys., 7 (2005) 365-3663. https://doi.org/10.1039/b506813d
[23] D. Pavithra, M. Doble. Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention, Biomed. Mater., 3 (2008) 1-13. https://doi.org/10.1088/1748-6041/3/3/034003
[24] M. Cloutier, D. Mantovani, F.Rosei, Antibacterial coatings: challenges, perspectives, and opportunities, Trends Biotechnol., 33 (2015) 637-652. https://doi.org/10.1016/j.tibtech.2015.09.002
[25] L. Hall-Stoodley, P. Stoodley, Evolving concepts in biofilm infections, Cell. Microbiol., 11 (2009) 1034-1043. https://doi.org/10.1111/j.1462-5822.2009.01323.x
[26] C. Sousa, P. Teixeira, R. Oliveira, Influence of surface properties on the adhesion of Staphylococcus epidemidis to acrylic and silicone, Int. J. Biomater., 2009 (2009) 1-9. https://doi.org/10.1155/2009/718017
[27] M. Katsikogianni, I. Spiliopoulou, D.P. Dowling, Y.F. Missirlis, Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings, J. Mater. Sci., 17 (2006) 679-689. https://doi.org/10.1007/s10856-006-9678-8
[28] A. Almaguer-Flores, L.A. Ximenez-Fyvie, S.E. Rodil. Oral bacterial adhesion on amorphous carbon and titanium films: Effect of surface roughness and culture media, J. Biomed. Mater. Sci. B. Appl. Biomater., 92B (2010) 196-204. https://doi.org/10.1002/jbm.b.31506
[29] J. Hoffmann, J. Groll, J. Heuts, H. Rong, D. Klee, G. Ziemer, M. Moeller, H.P. Wendel, Blood cell and plasma protein repellent properties of star-PEG-modified surfaces, J. Biomater. Sci. Polym. Ed., 17 (2006) 985-996. https://doi.org/10.1163/156856206778366059
[30] I. Fundeanu, D. Klee, A.J. Schouten, H.J. Busscher, H.C. van der Mei, Solvent-free functionalization of silicone rubber and efficacy of PAAm brushes grafted from an amino-PPX layer against bacterial adhesion, Acta Biomater., 6 (2010) 4271-4276. https://doi.org/10.1016/j.actbio.2010.06.010
[31] G. Cheng, H. Xue, Z. Zhang, S. Chen, S.A. Jiang, A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities, Angew. Chem. Int. Ed., 47 (2008) 8831-8834. https://doi.org/10.1002/anie.200803570
[32] W. Senaratne, L. Andruzzi, C.K. Ober, Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives., Biomacromolecules., 6 (2005) 2427-2448. https://doi.org/10.1021/bm050180a
[33] F. Schreiber, Structure and growth of self-assembling monolayers, Prog. Surf. Sci. 65 (2000) 151-256. https://doi.org/10.1016/S0079-6816(00)00024-1
[34] J.P. Bearinger, S. Terrettaz, R. Michel, N. Tirelli, H. Vogel, M. Textor, J.A. Hubbell, Chemiadsorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions, Nat. Mater., 2 (2003) 259-264. https://doi.org/10.1038/nmat851
[35] X. Khoo, P. Hamilton, G.A. O’Toole, B.D. Snyder, D.J. Kenan, M.W. Grinstaff, Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal, J. Am. Chem. Soc., 131 (2009) 10992-10997. https://doi.org/10.1021/ja9020827
[36] R.G.J.C. Heijkants, Nanotechnology delivers microcoatings, Med. Device. Technol., 17 (2006) 14-16.
[37] A.W. Bridges, A.J. Garcia, Anti-inflammatory polymeric coatings for implantable biomaterials and devices, J. Diabet. Sci. Technol., 2 (2008) 984-994. https://doi.org/10.1177/193229680800200628
[38] A. Roosjen, H.C. van der Mei, H.J. Busscher, W. Norde, Microbial adhesion to poly(ethyle oxide) brushes: Influence of polymer chain length and temperature, Langmuir., 20 (2004) 10949-10955. https://doi.org/10.1021/la048469l
[39] T. Thorsteinsson, T. Loftsson, M. Masson, Soft antibacterial agents, Curr. Med. Chem., 10 (2003) 1129-1136. https://doi.org/10.2174/0929867033457520
[40] H. Murata, R.R. Koepsel, K. Matyjaszewski, A.J. Russell, Permanent, non-leaching antibacterial surfaces-2: How high density cationic surfaces kill bacterial cells. Biomater., 28 (2007) 4870-4879. https://doi.org/10.1016/j.biomaterials.2007.06.012
[41] G. Cheng, H. Xue, G. Li, S. Jiang, Integrated antimicrobial and nonfouling hydrogels to inhibit the growth of planktonic bacterial cells and keep the surface clean, Langmuir., 26 (2010) 10425-10428. https://doi.org/10.1021/la101542m
[42] L.B. Rawlinson, P.J. O’Brien, D.J. Brayden, High content analysis of cytotoxic effects of pDMAEMA on human intestinal epithelial and monocytes cultures., J. Contr. Rel., 146 (2010) 84-92. https://doi.org/10.1016/j.jconrel.2010.05.002
[43] S. Venkataraman, Y. Zhang, L. Liu, Y. Yang, Design, synthesis and evaluation of hemocompatible pegylated-antimcrobial polymers with well-controlled molecular structures, Biomater., 31 (2010) 1751-1756. https://doi.org/10.1016/j.biomaterials.2009.11.030
[44] D.L. Fredell, Biological properties and applications of cationic surfactants. In Cationic Surfactants, 1st ed.; Cross, J.; Singer, E.J.; Eds.; Marcel Dekker Inc.: New York, NY, USA, (1990) 31-60.
[45] T. Ravikumar, H. Murata, R.R. Koepsel, A.J. Russell, Surface-active antifungal polyqyaternary amine., Biomacromol., 7 (2006) 2762-2769. https://doi.org/10.1021/bm060476w
[46] K. Hegstad, S. Langsrud, B.T. Lunestad, A.A. Scheie, M. Sunce, S.P. Yazdankhah, Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microb. Drug. Resist., 16 (2010) 91-104. https://doi.org/10.1089/mdr.2009.0120
[47] A. Fleming, On the antibacterial action of cultures of a Penicilium, with special reference to their use in the isolation of B. influenzae, Br. J. Exp. Pathol., 10 (1929) 226-236.
[48] T. Jaeblon, Polymethylmethacrylate: Properties and contemporary uses in orthopaedics, J. Am. Acad. Otrhop. Surg., 18 (2010) 297-305. https://doi.org/10.5435/00124635-201005000-00006
[49] J.C.J. Webb, R.F. Spencer, The role of polymethylmethacrylate bone cement in modern orthopaedic surgery, J. Bone. Joint. Surg., 89-B (2007) 851-857. https://doi.org/10.1302/0301-620X.89B7.19148
[50] P.A. Norowski, J.D. Bumgardner, Biomaterial and antibiotic strategies for peri-implants, J. Biomed. Mater. Res. B. Appl. Biomater. 88B (2009) 530-543. https://doi.org/10.1002/jbm.b.31152
[51] L. Zhao, P.K. Chu, Y. Zhang, Z. Wu, Antibacterial coatings on titanium implants, J. Biomed. Mater. Res. B. Appl. Biomater, 91B (2009) 470-480. https://doi.org/10.1002/jbm.b.31463
[52] T. Kälicke, J. Schierholz, U. Schlegel, T.M. Frangen, M. Köller, G. Printzen, D. Seybold, S. Klöckner, G. Muhr, S. Arens, Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: An in vitro and in vivo study, J. Orthop. Res., 24 (2006) 1622-1640. https://doi.org/10.1002/jor.20193
[53] L.G. Harris, L. Mead, E. Müller-Oberländer, R.G. Richards, Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces, J. Biomed. Mater. Res., 78A (2006) 50-58. https://doi.org/10.1002/jbm.a.30611
[54] M. Stigter, J. Bezemer, K. de Groot, P. Layrolle, Incorporation of different antibiotics into carbonated hydrozyapatite coatings on titanium implants, release and antibiotic effect, J. Contr. Rel., 99 (2004) 127-137. https://doi.org/10.1016/j.jconrel.2004.06.011
[55] R.O. Darouiche, M.D. Mansouri, D. Zakarevicz, A. Alsharif, G.C. Landon, In vivo efficacy of antimicrobial-coated devices, J. Bone. Joint. Surg. Am., 89 (2007) 792-797.
[56] M.E. Falagas, K. Fragoulis, I.A. Bliziotis, I. Chatzinikolaou, Rifampicin-impregnated central venous catheters: A meta-analysis of randomized controlled trials, J. Antimicrob. Chemother., 59 (2007) 359-369. https://doi.org/10.1093/jac/dkl522
[57] T. Hernandez-Richter, H.M. Schardey, F. Wittmann, S. Mayr, M. Schmitt-Sody, S. Blasenbrue, M.M. Heiss, C. Gabka, M.K. Angele, Rifampicin and triclosan but not silver is effective in preventing bacterial infection of vascular Dacron graft material, Eur. J. Vasc. Endovasc. Surg., 26 (2003) 550-557. https://doi.org/10.1016/S1078-5884(03)00344-7
[58] K.A. Halton, D. Cook, D.L. Paterson, N. Safdar, N. Graves, Cost-effectiveness of a central venous catheter care bundle, PloS. ONE. (2010), http://dx.doi.org/10.1371/journal.pone.0012815. https://doi.org/10.1371/journal.pone.0012815
[59] B. Walder, D. Pittet, M.R. Tramer, Prevention of bloodstream infections with central venous catheters treated with anti-infective agents depends on catheter type and insertion time: Evidence from a meta-analysis, Infect. Control. Hosp. Epidemiol., 23 (2002) 748-756. https://doi.org/10.1086/502005
[60] H. Ceri, M.E. Olson, R.J. Turner, Needed, new paradigms in antibiotic development, Expert. Opin. Pharmacother., 11 (2010) 1233-1237. https://doi.org/10.1517/14656561003724747
[61] A. Lohda, A.D. Furlan, H. Whyte, A.M. Moore, Prophylactic antibiotics in the prevention of catheter-associated bloodstream bacterial infection in preterm neonates: a systematic review, J. Perionatol., 28 (2008) 526-533. https://doi.org/10.1038/jp.2008.31
[62] J.W. Alexander, History of the medical use of silver, Surg. Infect., 10 (2009) 289-292. https://doi.org/10.1089/sur.2008.9941
[63] M. Spear, Silver: an age-old treatment modality in modern times, Plast. Surg. Nurs., 30 (2010) 90-93. https://doi.org/10.1097/PSN.0b013e3181deea2e
[64] B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Effect of silver on burn wound infection and healing: Review of the literature, Burns., 33 (2007) 139-148. https://doi.org/10.1016/j.burns.2006.06.010
[65] S. Silver, L.T. Phung, G. Silver, Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds, J. Ind. Microbiol. BioTechnol., 33 (2006) 627-634. https://doi.org/10.1007/s10295-006-0139-7
[66] H.J. Klasen, Historical review of the use of silver in the treatment of burns. I. early uses., Burns., 26 (2000) 117-130. https://doi.org/10.1016/S0305-4179(99)00108-4
[67] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., (2009) 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
[68] T. Nakane, H. Gomyo, I. Sasaki, Y. Kimoto, N. Hanzawa, Y. Teshima, T. Namba, New antiaxillary odour deodorant made with antimicrobial Ag-eolite (silver-exchanged zeolite), Int. J. Cosmet. Sci., 28 (2006) 299-309. https://doi.org/10.1111/j.1467-2494.2006.00322.x
[69] J.L. Meakins, Silver and new technology: dressings and devices Surg. Infect., 10 (2009) 293-296. https://doi.org/10.1089/sur.2008.9942
[70] C. Dowsett, The use of silver-based dressing in wound care, Nurs. Stand., 19 (2004) 56-60. https://doi.org/10.7748/ns.19.7.56.s58
[71] M.N. Strom-Versloot, C.G. Vos, D.T. Ubbink, H. Vermeulen, Topical silver for preventing wound infection, Cochrane. Database. Syst. Rev., 3 (2010) 1-110. https://doi.org/10.1002/14651858.CD006478.pub2
[72] G. Gravante, R. Caruso, R. Sorge, F. Nicoli, P. Gentile, V. Cervelli, Nanocrystalline silver. Reconstr. Surg. Burns. 63 (2009) 201-205. https://doi.org/10.1097/SAP.0b013e3181893825
[73] G. Gravante, A. Montone, A retrospective analysis of ambulatory burn patients: Focus on wound dressings and healing times, Ann. Rev. Coll. Surg. Engl., 92 (2010) 118-123. https://doi.org/10.1308/003588410X12518836439001
[74] J. Fichtner, E. Güresir, V. Seifert, A. Raabe, Efficacy of silver-bearing external ventricular drainage catheters: A retrospective analysis, J. Neurosurg. 112 (2010) 840-846. https://doi.org/10.3171/2009.8.JNS091297
[75] D. Roe, B. Karandikar, N. Bonn-Savage, B. Gibbins, J.B. Roullet, Antimicrobial surface functionalization of plastic catheters by silver nanoparticles, J. Antimicrob. Chemther., 61 (2008) 869-876. https://doi.org/10.1093/jac/dkn034
[76] S.H. Hsu, H.J. Tseng, Y.C. Lin, The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites, Biomater., 31 (2010) 6796-6808. https://doi.org/10.1016/j.biomaterials.2010.05.015
[77] J.R. Johnson, M.A. Kuskowski, T.J. de Wilt, Systematic review: Antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients, Ann. Intern. Med., 144 (2006) 116-126. https://doi.org/10.7326/0003-4819-144-2-200601170-00009
[78] B. Trautner, Management of catheter-associated urinary tract infection, Curr. Opin. Infect. Dis., 23 (2010) 76-82. https://doi.org/10.1097/QCO.0b013e328334dda8
[79] C. Seymour, Audit of catheter-associated UTI using silver alloy-coated Foley catheters., Br. J. Nurs., 15 (2006) 598-603. https://doi.org/10.12968/bjon.2006.15.11.21227
[80] D. Parker, L. Callan, J. Harwood, D.L. Thompson, M. Wilde, M. Gray, Nursing interventions to reduce the risk of catheter-associated urinary tract infection, J. Wound. Ostomy. Cont. Nurs., 36 (2009) 23-34. https://doi.org/10.1097/01.WON.0000345173.05376.3e
[81] J. Liu, D.A. Sonshine, S. Shervani, R.H. Hurt, Controlled release of biologically active silver from nanosilver surfaces, ACS. Nano, 4 (2010) 6903-6913. https://doi.org/10.1021/nn102272n
[82] P. Pallavicini, A. Taglietti, G. Dacarro, Y.A. Diaz-Fernandez, M. Galli, P. Grisoli, M. Patrini, G.S. De Magistris, R. Zanoni, Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity, J. Colloid. Interface. Sci., 350 (2010) 110-116. https://doi.org/10.1016/j.jcis.2010.06.019
[83] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? a study of the gram-negative bacterium Eschericia coli, Appl. Environ. Microbiol., 73 (2007) 1712-1720. https://doi.org/10.1128/AEM.02218-06
[84] A. Panacek, L. Kvitek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurove, V.K. Sharma, T. Nevecna, R. Zboril, Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity, J. Phys. Chem., B. 110 (2006) 16248-16253. https://doi.org/10.1021/jp063826h
[85] G.A. Sotiriou, S.E. Pratsinis, Antibacterial activity of nanosilver ions and particles, Environ. Sci. Technol., 44 (2010) 5649-5654. https://doi.org/10.1021/es101072s
[86] G. Danscher, L. Jansons-Locht, In vivo liberation of silver ions from metallic silver surfaces, Histochem. Cell. Biol., 133 (2010) 359-366. https://doi.org/10.1007/s00418-009-0670-5
[87] C. Ho, S.K. Yau, C. Lok, M. So, C. Che, Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study, Chem. Asian. J., 5 (2010) 285-293. https://doi.org/10.1002/asia.200900387
[88] I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: A case on E. coli as a model for gram-negative bacteria, J. Colloid. Interface. Sci., 275 (2004) 177-182. https://doi.org/10.1016/j.jcis.2004.02.012
[89] M. Mayr, M.J. Kim, D. Warner, H. Hopfer, J. Schroeder, M. J. Mihatsch, Argyria and decreased kidney function: are silver compounds toxic to the kidney? Am. J. Kidney. Dis., 53 (2009) 890-894. https://doi.org/10.1053/j.ajkd.2008.08.028
[90] P.V. Asharani, G.LK. Mun, M.P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells, ACS Nano, 3 (2009) 279-290. https://doi.org/10.1021/nn800596w
[91] S. Silver, Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds, FEMS. Microbiol. Rev., 27 (2003) 341-353. https://doi.org/10.1016/S0168-6445(03)00047-0
[92] S.L. Percival, P.G. Bowler, D. Russell, Bacterial resistance to silver in wound care. J. Hosp. Infect., 60 (2005) 1-7. https://doi.org/10.1016/j.jhin.2004.11.014
[93] A. Cuin, A.C. Massabni, C.Q.F. Leite, D.N. Sato, A. Neves, B. Szpoganicz, M.S. Silve, A.J. Bortoluzzi, Synthesis, X-ray structure and antimycobacterial activity of silver complexes with α-hydroxycarboxylic acids, J. Inorg. BioChem., 101 (2007) 291-296. https://doi.org/10.1016/j.jinorgbio.2006.10.001
[94] P.L. Drake, K.J. Hazelwood, Exposure-related health effects of silver and silver compounds: a review, Ann. Occup. Hyg., 49 (2005) 575-585.
[95] E. Ah, W.S. Lee, K.M. Kim, S.Y. Kim, Occupational generalized argyria after exposure to aerosolized silver, J. Dermatol., 35 (2008) 759-760. https://doi.org/10.1111/j.1346-8138.2008.00562.x
[96] H.B. Kwon, J.H. Lee, S.H. Lee, A.Y. Lee, J.S. Choi, Y.S. Ahn, A case of argyria following colloidal silver ingestion, Ann. Dermatol., 21 (2009) 308-310. https://doi.org/10.5021/ad.2009.21.3.308
[97] N.S. Tomi, B. Kränke, W. Aberer, A silver man, Lancet., 363 (2004) 532. https://doi.org/10.1016/S0140-6736(04)15540-2
[98] S.C. Hau, S.J. Tuft, Presumed corneal argyrosis from occlusive soft contact lenses: a case report., Cornea., 28 (2009) 703-705. https://doi.org/10.1097/ICO.0b013e31818f9724
[99] X. Wang, H. Chang, R. Francis, H. Olszowy, P. Liu, M. Kempf, L. Cuttle, O. Kravchuk, G.E. Phillips, R.M. Kimble, Silver deposits in cutaenous burn scar tissue is a common phenomenon following application of a silver dressing, J. Cutan. Pathol., 36 (2009) 788-792. https://doi.org/10.1111/j.1600-0560.2008.01141.x
[100] V. Karpakam, K. Kamaraj, S. Sathiyanarayanan, G. Venkatachari, S. Ramu, Electrosynthesis of polyaniline–molybdate coating on steel and its corrosion protection performance, Electrochim. Acta, 56 (2011) 2165-2173. https://doi.org/10.1016/j.electacta.2010.11.099
[101] R. Arefinia, A. Shojaei, H. Shariatpanahi, J. Neshati, Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system, Prog. Org. Coat., 75 (2012) 502-508. https://doi.org/10.1016/j.porgcoat.2012.06.003
[102] R. Akid, M, Gobara, H. Wang, Corrosion protection performance of novel hybrid polyaniline/sol–gel coatings on an aluminium 2024 alloy in neutral, alkaline and acidic solutions, Electrochim. Acta, 56 (2011) 2483-2492. https://doi.org/10.1016/j.electacta.2010.12.032
[103] D. Kowalski, M. Ueda, T. Ohtsuka Self-healing ion-permselective conducting polymer coating, J. Mater. Chem., 20 (2010) 7630-7633. https://doi.org/10.1039/c0jm00866d
[104] Z. Zhang, Y. Hu, Z. Liu, T. Guo, Synthesis and evaluation of a moisture-promoted healing copolymer, Polymer, 53 (2012) 2979-2990. https://doi.org/10.1016/j.polymer.2012.04.048
[105] T.F. Da Conceicao, N. Scharnagl, W. Dietzel, D. Hoeche, K.U. Kainer, Study on the interface of PVDF coatings and HF-treated AZ31 magnesium alloy: determination of interfacial interactions and reactions with self-healing properties, Corros. Sci., 53 (2011) 712-719. https://doi.org/10.1016/j.corsci.2010.11.001
[106] B. A¨ıssa, R. Nechache, E. Haddad, W. Jamroz, P.G. Merle, F. Rosei, Ruthenium Grubbs’ catalyst nanostructures grown by UV-excimer-laser ablation for self-healing applications, Appl. Surf. Sci., 258 (2012) 9800-9804. https://doi.org/10.1016/j.apsusc.2012.06.032
[107] A. Yabuki, K. Okumura, Self-healing coatings using superabsorbent polymers for corrosion inhibition in carbon steel, Corros. Sci., 59 (2012) 258-262. https://doi.org/10.1016/j.corsci.2012.03.007
[108] A. Yabuki, W. Urushihara, J. Kinugasa, K. Sugano, Self-healing properties of TiO2 particle–polymer composite coatings for protection of aluminum alloys against corrosion in seawater, Mater. Corros., 62 (2011) 907-912. https://doi.org/10.1002/maco.201005756
[109] D.O. Grigoriev, K. Ko¨hler, E. Skorb, D.G. Shchukin, H. Mo¨hwald, Polyelectrolyte complexes as a “smart” depot for self-healing anticorrosion coatings, Soft. Matter., 5 (2009) 1426-1432. https://doi.org/10.1039/b815147d
[110] G. Williams, S. Geary, H.N. McMurray, Smart release corrosion inhibitor pigments based on organic ion-exchange resins, Corros. Sci., 57 (2012) 139-147. https://doi.org/10.1016/j.corsci.2011.12.024
[111] A. Yabuki, T. Nishisaka, Self-healing capability of porous polymer film with corrosion inhibitor inserted for corrosion protection, Corros. Sci., 53 (2011) 4118-4123. https://doi.org/10.1016/j.corsci.2011.08.022
[112] J. Carneiro, J. Tedim, S.C.M. Fernandes, C.R.S. Freire, A.J.D. Silvestre, A. Gandini, MG.S. Ferreira M.L. Zheludkevich, Chitosan-based self-healing protective coatings doped with cerium nitrate for corrosion protection of aluminum alloy 2024, Prog. Org. Coat., 75 (2012) 8-13. https://doi.org/10.1016/j.porgcoat.2012.02.012
[113] J. Yuan, X. Fang, L. Zhang, G. Hong, Y. Lin, Q. Zheng, Y. Xu, Y. Ruan, W. Weng, H. Xia, G Chen, Multi-responsive self-healing metallo-supramolecular gels based on “click” ligand, J. Mater. Chem., 22 (2012) 11515-11522. https://doi.org/10.1039/c2jm31347b
[114] S. Billiet, W. Van Camp, X.K.D. Hillewaere, H, Rahier, F.E. Du Prez, Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry, Polymer, 53 (2012) 2320-2326. https://doi.org/10.1016/j.polymer.2012.03.061
[115] W. Feng, S.H. Patel, M.Y. Young, J.L. III. Zunino, M. Xanthos, Smart polymeric coatings—recent advances, Adv. Polym. Technol., 26 (2007) 1-13. https://doi.org/10.1002/adv.20083
[116] T. Siva, K. Kamaraj, V. Karpakam, S. Sathiyanarayanan, Soft template synthesis of poly(o-phenylenediamine) nanotubes and its application in self healing coatings, Prog. Org. Coat., 76 (2013) 581-588. https://doi.org/10.1016/j.porgcoat.2012.11.009
[117] M.L. Zheludkevich, J. Tedim, C.S.R. Freire, S.C.M. Fernandes, S. Kallip, A. Lisenkov, A. Gandini, M.G.S. Ferreira, Self-healing protective coatings with “green” chitosan based pre-layer reservoir of corrosion inhibitor, J. Mater. Chem., 21 (2011) 4805-4812. https://doi.org/10.1039/c1jm10304k
[118] D.V. Andreeva, D. Fix, H. Mo¨hwald, D.G. Shchukin, self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures, Adv. Mater., 20 (2008) 2789-2794. https://doi.org/10.1002/adma.200800705
[119] D.V. Andreeva, D. Fix, H. Mo¨hwald, D.G. Shchukin, Buffering polyelectrolyte multilayers for active corrosion protection, J. Mater. Chem., 18 (2008)1738-1740. https://doi.org/10.1039/b801314d
[120] S.J. Garc’ıa, H.R. Fischer, P. White, J. Mardel, Y. Gonza’lez-Garcia, J.M.C. Mol, A.E. Hughes, Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: Synthesis and proof of concept, Prog. Org. Coat., 70 (2011) 142-149. https://doi.org/10.1016/j.porgcoat.2010.11.021
[121] G. Williams, A. Gabriel, A. Cook, H.N. McMurray, Dopant Effects in Polyaniline Inhibition of Corrosion-Driven Organic Coating Cathodic Delamination on Iron, J. Electrochem. Soc., 153 (2006) B425-B433. https://doi.org/10.1149/1.2229280
[122] T. Tu¨ken, B. Yazıcı, M. Erbil, Dopant Effects in Polyaniline Inhibition of Corrosion-Driven Organic Coating Cathodic Delamination on Iron, Appl. Surf. Sci., 252 (2006) 2311-2318.
[123] D. Borisova, H. Mo¨hwald, D.G. Shchukin, Influence of Embedded Nanocontainers on the Efficiency of Active Anticorrosive Coatings for Aluminum Alloys Part II: Influence of Nanocontainer Position, ACS Appl. Mater. & Interf., 5 (2013) 80-87. https://doi.org/10.1021/am302141y
[124] I.A. Kartsonakis, A.C. Balaskas, E.P. Koumoulos, C.A. Charitidis, G. Kordas, Evaluation of corrosion resistance of magnesium alloy ZK10 coated with hybrid organic–inorganic film including containers, Corros. Sci., 65 (2012) 481-493. https://doi.org/10.1016/j.corsci.2012.08.052
[125] A. Stankiewicz, M. Barker, Development of self-healing coatings for corrosion protection on metallic structures, Smart Mater. Struct., 25 (2016) 1-10. https://doi.org/10.1088/0964-1726/25/8/084013. https://doi.org/10.1088/0964-1726/25/8/084013
[126] M.L. Zheludkevich, J. Tedim, M.G.S. Ferreira, “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers, Electrochim. Acta, 82 (2012) 314-323. https://doi.org/10.1016/j.electacta.2012.04.095
[127] D,G, Shchukin, M.L. Zheludkevich, H. Mo¨hwald Feedback active coatings based on incorporated nanocontainers, J. Mater. Chem., 16 (2006) 4561-4566. https://doi.org/10.1039/B612547F
[128] T.C. Mauldin, M.R. Kessler, Self-healing polymers and composites. Int. Mater. Rev., 55 (2010) 317-346. https://doi.org/10.1179/095066010X12646898728408
[129] T. Nesterova, K. Dam-Johansen, L.T. Pedersen, S. Kiil, Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testing, Prog. Org. Coat., 75 (2012) 309-318. https://doi.org/10.1016/j.porgcoat.2012.08.002
[130] N. Selvakumar, K. Jeyasubramanian, R. Sharmila, Smart coating for corrosion protection by adopting nano particles, Prog. Org. Coat., 74 (2012) 461-469. https://doi.org/10.1016/j.porgcoat.2012.01.011
[131] X. Liu, H. Zhang, J. Wang, Z. Wang, S. Wang, Preparation of epoxy microcapsule based self-healing coatings and their behaviour, Surf. Coat. Technol., 206 (2012) 4976-4980. https://doi.org/10.1016/j.surfcoat.2012.05.133
[132] T. Nesterova, K. Dam-Johansen, S. Kiil, Synthesis of durable microcapsules for self-healing anticorrosive coatings: A comparison of selected methods, Prog. Org. Coat., 70 (2011) 342-352. https://doi.org/10.1016/j.porgcoat.2010.09.032
[133] R.S. Jadhav, D.G. Hundiwale, P.P. Mahulikar, Synthesis and characterization of phenol–formaldehyde microcapsules containing linseed oil and its use in epoxy for self-healing and anticorrosive coating, J. Appl. Polym. Sci., 119 (2011) 2911-2916. https://doi.org/10.1002/app.33010
[134] Z. Yang, Z. Wei, L. Liao, H. Wang, W. Li, The self-healing composite anticorrosion coating, Physics. Procedia., 18 (2011) 216-221. https://doi.org/10.1016/j.phpro.2011.06.084
[135] Y. Zhao, W. Zhang, L. Liao, S. Wang, W. Li, Self-healing coatings containing microcapsule, Appl. Surf. Sci., 258 (2012) 1915-1918. https://doi.org/10.1016/j.apsusc.2011.06.154
[136] M. Huang, J. Yang, Facile microencapsulation of HDI for self-healing anticorrosion coatings, J. Mater. Chem., 21 (2011) 11123-11130. https://doi.org/10.1039/c1jm10794a
[137] H. Choi, Y.K. Song, K.Y. Kim, J.M. Park, Encapsulation of triethanolamine as organic corrosion inhibitor into nanoparticles and its active corrosion protection for steel sheets, Surf. Coat. Technol., 206 (2012) 2354-2362. https://doi.org/10.1016/j.surfcoat.2011.10.030
[138] D.G. Shchukin, D.O. Grigoriev, H. Mo¨hwald, Application of smart organic nanocontainers in feedback active coatings, Soft. Matter., 6 (2010) 720-725. https://doi.org/10.1039/B918437F
[139] D.G. Shchukin, H. Mo¨hwald, Smart nanocontainers as depot media for feedback active coatings, Chem. Commun., 47 (2011) 8730-8739. https://doi.org/10.1039/c1cc13142g
[140] A. Pilba’th, T. Szabo´, J. Telegdi, L. Nyikos, SECM study of steel corrosion under scratched microencapsulated epoxy resin, Prog. Org. Coat., 75 (2012) 480-485. https://doi.org/10.1016/j.porgcoat.2012.06.006
[141] M.F. Montemor, D.V. Snihirova, M.G. Taryba, S.V. Lamaka, I.A. Kart-sonakis, A.C. Balaskas, G.C. Kordas, J. Tedim, A. Kuznetsova, M.L. Zheludkevich, M.G.S. Ferreira Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors, Electrochim. Acta, 60 (2012) 31-40. https://doi.org/10.1016/j.electacta.2011.10.078
[142] J. Tedim, S.K. Poznyak, A. Kuznetsova, D. Raps, T. Hack, M.L. Zheludkevich, M.G.S. Ferreira, Enhancement of active corrosion protection via combination of inhibitor-loaded nanocontainers, ACS Appl. Mater. Interfac., 2 (2010) 1528-1535. https://doi.org/10.1021/am100174t
[143] M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hackc, L.F. Dick, T. Nunes, M.G.S. Ferreira, Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor, Corros. Sci., 52 (2010) 602-611. https://doi.org/10.1016/j.corsci.2009.10.020
[144] M.F. Haase, D.O. Grigoriev, H. Mo¨hwald, D.G. Shchukin, development of nanoparticle stabilized polymer nanocontainers with high content of the encapsulated active agent and their application in water-borne anticorrosive coatings, Adv. Mater., 24 (2012) 2429-2435. https://doi.org/10.1002/adma.201104687
[145] F. Maia, J. Tedim, A.D. Lisenkov, A.N. Salak, M.L. Zheludkevich, M.G.S. Ferreira, Silica nanocontainers for active corrosion protection, Nanoscale, 4 (2012) 1287-1298. https://doi.org/10.1039/c2nr11536k
[146] D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira, H. Mo¨hwald, Layer-by-layer assembled nanocontainers for self-healing corrosion protection, Adv. Mater., 18 (2006) 1672-1678. https://doi.org/10.1002/adma.200502053
[147] H. Gro¨ger, F. Gyger, P. Leidinger, C. Zurmu¨hl, C. Feldmann, Microemulsion approach to nanocontainers and its variability in composition and filling, Adv. Mater., 21 (2009)1586-1590. https://doi.org/10.1002/adma.200802972
[148] S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, F.M. Montemor, P. Cecilio, M.G.S. Ferreira, TiOx self-assembled networks prepared by templating approach as nanostructured reservoirs for self-healing anticorrosion pre-treatments, Electrochem. Commun., 8 (2006) 421-428. https://doi.org/10.1016/j.elecom.2005.12.019
[149] A.C. Balaskas, I.A. Kartsonakis, L.A. Tziveleka, G.C. Kordas, Improvement of anti-corrosive properties of epoxy-coated AA 2024-T3 with TiO2 nanocontainers loaded with 8-hydroxyquinoline, Prog. Org. Coat., 74 (2012) 418-426. https://doi.org/10.1016/j.porgcoat.2012.01.005
[150] D. Snihirova, S.V. Lamaka, M.F. Montemor, “SMART” protective ability of water based epoxy coatings loaded with CaCO3 microbeads impregnated with corrosion inhibitors applied on AA2024 substrates, Electrochim. Acta, 83 (2012) 439-447. https://doi.org/10.1016/j.electacta.2012.07.102
[151] M. Kouhi, A. Mohebbi, M. Mirzaei, Evaluation of the corrosion inhibition effect of micro/nanocapsulated polymeric coatings: a comparative study by use of EIS and Tafel experiments and the area under the Bode plot, Res. Chem. InterMed., 39 (2012) 2049-2062. https://doi.org/10.1007/s11164-012-0736-1
[152] G.L. Li, Z. Zheng, H. Mo¨hwald, D.G. Shchukin, Silica/Polymer Double-Walled Hybrid Nanotubes: Synthesis and Application as Stimuli-Responsive Nanocontainers in Self-Healing Coatings, ACS Nano, 7 (2013) 2470-2478. https://doi.org/10.1021/nn305814q
[153] D. Fix, D.V. Andreeva, Y.M. Lvov, D.G. Shchukin, H. Mo¨hwald, Application of inhibitor-loaded halloysite nanotubes in active anti-corrosive coatings, Adv. Funct. Mater., 19 (2009) 1720-1727. https://doi.org/10.1002/adfm.200800946
[154] N.P. Tavandashti, S. Sanjabi, Corrosion study of hybrid sol–gel coatings containing boehmite nanoparticles loaded with cerium nitrate corrosion inhibitor, Prog. Org. Coat., 69 (2010) 384-391. https://doi.org/10.1016/j.porgcoat.2010.07.012
[155] Y.M. Lvov, D.G. Shchukin, H. Mo¨hwald, R.R. Price, Halloysite clay nanotubes for controlled release of protective agents, J. Nanosci. Nanotech., 2 (2008) 814-820. https://doi.org/10.1021/nn800259q
[156] X. Jiang, Y.B. Jiang, N. Liu, H. Xu, S. Rathod, P. Shah, C.F. Binker, Controlled release from core-shell nanoporous silica particles for corrosion inhibition of aluminum alloys, J. Nanomater., 2011 (2011) 1-10. https://doi.org/10.1155/2011/760237
[157] M. Zheludkevich, R. Serra, M. Montemor, M. Ferreira, Oxide nanoparticle reservoirs for storage and prolonged release of the corrosion inhibitors, Electrochem. Commun., 7 (2005) 836-840. https://doi.org/10.1016/j.elecom.2005.04.039
[158] S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, R. Serra, S.K. Poznyak, M.G.S. Ferreira, Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability, Prog. Org. Coat., 58 (2007) 127-135. https://doi.org/10.1016/j.porgcoat.2006.08.029
[159] A.N. Khramov, N.N. Voevodin, V.N. Balbyshev, M.S. Donley, Hybrid organo-ceramic corrosion protection coatings with encapsulated organic corrosion inhibitors, Thin. Solid. Films, 447–448 (2004) 549-557. https://doi.org/10.1016/j.tsf.2003.07.016
[160] D. Borisova, H. Mo¨hwald, D.G. Shchukin, Influence of embedded nanocontainers on the efficiency of active anticorrosive coatings for aluminum alloys part I: influence of nanocontainer concentration, Appl. Mater. Interf., 4 (2012) 2931-2939. https://doi.org/10.1021/am300266t
[161] A. Latnikova, D.O. Grigoriev, J. Hartmann, H. Mo¨hwald, D.G. Shchukin, Polyfunctional active coatings with damage-triggered water-repelling effect, Soft. Matter., 7 (2011) 369-372. https://doi.org/10.1039/C0SM00842G
[162] C. Suryanarayana, K. C. Rao, D. Kumar, Preparation and characterization of microcapsules containing linseed oil and its use in self-healing coatings, Prog. Org. Coat., 63 (2008) 72-78. https://doi.org/10.1016/j.porgcoat.2008.04.008
[163] J. Fickert, C. Wohnhaas, A. Turshatov, K. Landfester, D. Crespy, Copolymers structures tailored for the preparation of nanocapsules, Macromolecul., 46 (2013) 573-597. https://doi.org/10.1021/ma302013s
[164] V. Sauvant-Moynot, S. Gonzalez, J. Kittel, Self-healing coatings: An alternative route for anticorrosion protection, Prog. Org. Coat., 63 (2008) 307-315. https://doi.org/10.1016/j.porgcoat.2008.03.004
[165] A. Aramaki, Synergistic inhibition of zinc corrosion in 0.5 M NaCl by combination of cerium(III) chloride and sodium silicate, Corros. Sci., 44 (2002) 871-886. https://doi.org/10.1016/S0010-938X(01)00087-7
[166] M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H. Mo¨hwald, M.G.S. Ferreira, Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor, Chem. Matter., 19 (2007) 402-411. https://doi.org/10.1021/cm062066k
[167] P.D. Tatiya, R.K. Hedaoo, P.P. Mahulikar, V.V. Gite, Novel polyurea microcapsules using dendritic functional monomer: synthesis, characterization, and its use in self-healing and anticorrosive polyurethane coatings, Ind. Eng. Chem. Res., 52 (2013) 1562-1570. https://doi.org/10.1021/ie301813a
[168] D. Borisova, H. Mo¨hwald, D.G. Shchukin, Mesoporous silica nanoparticles for active corrosion protection, ACS Nano, 5 (2011) 1939-1946. https://doi.org/10.1021/nn102871v
[169] E.M. Moustafa, A. Dietz, T. Hochsattel, Manufacturing of nickel/nanocontainer composite coatings, Surf. Coat. Technol., 216 (2013) 93-99. https://doi.org/10.1016/j.surfcoat.2012.11.030
[170] M. Samadzadeh, S.H. Boura, M. Peikari, S. M. Kasiriha, A. Ashrafi, A review on self-healing coatings based on micro/nanocapsules, Prog. Org. Coat., 68 (2010) 159-164. https://doi.org/10.1016/j.porgcoat.2010.01.006
[171] A. Kumar, L.D. Stephenson, J.N. Murray, Self-healing coatings for steel, Prog. Org. Coat., 55 (2006) 244-253. https://doi.org/10.1016/j.porgcoat.2005.11.010
[172] A. Latnikova, D. Grigoriev, M. Schenderlein, H. Mo¨hwald, D. Shchukin, A new approach towards “active” self-healing coatings: exploitation of microgels, Soft. Matter., 8 (2012) 10837-10844. https://doi.org/10.1039/c2sm26100f
[173] N.C. Rosero-Navarro, L. Paussa, F. Andreatta, Y. Castro, A. Duran, M. Aparicio, L. Fedrizzi, Optimization of hybrid sol–gel coatings by combination of layers with complementary properties for corrosion protection of AA2024, Prog. Org. Coat., 69 (2010) 167-174. https://doi.org/10.1016/j.porgcoat.2010.04.013
[174] N.C. Rosero-Navarro, S.A. Pellice, A. Dura’n, M. Aparicio, Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corros. Sci., 50 (2008) 1283-1291. https://doi.org/10.1016/j.corsci.2008.01.031
[175] F. Andreatta, P. Aldighieri, L. Paussa, R. Di Maggio, S. Rossi, L. Fedrizzi, Electrochemical behaviour of ZrO2 sol–gel pre-treatments on AA6060 aluminium alloy, Electrochim. Acta, 52 (2007) 7545–7555. https://doi.org/10.1016/j.electacta.2006.12.065
[176] M.F. Montemor, W. Trabelsi, S.V. Lamaka, K.A. Yasakau, M.L. Zheludkevich, A.C. Bastos, M.G.S. Ferreira, The synergistic combination of bis-silane and CeO2·ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions, Electrochim. Acta, 53 (2008) 5913-5922. https://doi.org/10.1016/j.electacta.2008.03.069
[177] M.F. Montemor, R. Pinto, M.G.S. Ferreira, Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles, Electrochim. Acta, 54 (2009) 5179-5189. https://doi.org/10.1016/j.electacta.2009.01.053
[178] L.K. Wu, L. Liu, J. Li, J.M. Hu, J.Q. Zhang, C.N. Cao, Electrodeposition of cerium (III)-modified bis-[triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminum alloy) for corrosion protection, Surf. Coat. Technol., 204 (2010) 3920-3926. https://doi.org/10.1016/j.surfcoat.2010.05.027
[179] J. Bardon, J. Bour, H. Aubriet, D. Ruch, B. Verheyde, R. Dams, S. Paulussen, R. Rego, D. Vangeneugden, Deposition of Organosilicon-based anticorrosion layers on galvanized steel by atmospheric pressure dielectric barrier discharge plasma. Plasma Proc. Polym., 4 (2007) S445-S449. https://doi.org/10.1002/ppap.200731204
[180] L. Paussa, N.C. Rosero-Navarro, F. Andreatta, Y. Castro, A. Duran, M. Aparicio, L. Fedrizzi, Inhibition effect of cerium in hybrid sol–gel films on aluminium alloy AA2024, Surf. Interface. Anal., 42 (2010) 299-305. https://doi.org/10.1002/sia.3198
[181] A. Pepe, M. Aparicio, S. Cere´, A. Dura’n, Preparation and characterization of cerium doped silica sol–gel coatings on glass and aluminum substrates J. Non-Cryst. Solids, 348 (2004) 162-171. https://doi.org/10.1016/j.jnoncrysol.2004.08.141
[182] A. Pepe, M. Aparicio, A. Dura’n, S. Cere´, Cerium hybrid silica coatings on stainless steel AISI 304 substrate, J. Sol-Gel. Sci. Technol., 39 (2006) 131-138. https://doi.org/10.1007/s10971-006-9173-1
[183] F. Andreatta, L. Paussa, P. Aldighieri, A. Lanzutti, D. Raps, L. Fedrizzi, Corrosion behaviour of sol–gel treated and painted AA2024 aluminium alloy, Prog. Org. Coat., 69 (2010) 133-142. https://doi.org/10.1016/j.porgcoat.2010.04.012
[184] L. Paussa, N.C. Rosero Navarro, D. Bravin, F. Andreatta, A. Lanzutti, M. Aparicio, A. Duran, L. Fedrizzi, ZrO2 sol–gel pre-treatments doped with cerium nitrate for the corrosion protection of AA6060, Prog. Org. Coat., 74 (2012) 311-319. https://doi.org/10.1016/j.porgcoat.2011.08.017
[185] N.C. Rosero-Navarro, M. Curioni, Y. Castro, M. Aparicio, G.E. Thompson, A. Duran, Glass-like CexOy sol–gel coatings for corrosion protection of aluminium and magnesium alloys, Surf. Coat. Technol., 206 (2011) 257-264. https://doi.org/10.1016/j.surfcoat.2011.07.006
[186] N.C. Rosero-Navarro, S.A. Pellice, A. Dura’n, S. Cere´, M. Aparicio, Corrosion protection of aluminium alloy AA2024 with cerium doped methacrylate-silica coatings, J. Sol-Gel. Sci. Technol., 52 (2009) 31-40. https://doi.org/10.1007/s10971-009-2010-6
[187] C. Motte, M. Poelman, A. Roobroeck, M. Fedel, F. Deflorian, M.G. Olivier, Improvement of corrosion protection offered to galvanized steel by incorporation of lanthanide modified nanoclays in silane layer, Prog. Org. Coat., 74 (2012) 326-333. https://doi.org/10.1016/j.porgcoat.2011.12.001
[188] A. Collazo, A. Covelo, X.R. No’voa, C. Pe’rez, Corrosion protection performance of sol–gel coatings doped with red mud applied on AA2024-T3, Prog. Org. Coat., 74 (2012) 334-342. https://doi.org/10.1016/j.porgcoat.2011.10.001
[189] S.M. Madani, M. Ehteshamzadeh, H.H. Rafsanjani, S.S. Mansoori, The effect of calcination on the corrosion performance of TiO2 sol–gel coatings doped with benzotriazole on steel CK45, Mater. Corros. 61(2009) 318-323.
[190] S.M. Hosseini, A.H. Jafari, E. Jamalizadeh, Self-healing corrosion protection by nanostructure sol–gel impregnated with propargyl alcohol Electrochim. Acta, 54 (2009) 7207-7213. https://doi.org/10.1016/j.electacta.2009.07.002
[191] W. Trabelsi, P. Cecilio, M.G.S Ferreira, M.F. Montemor, Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanised steel substrates, Prog. Org. Coat., 54 (2005) 276-284. https://doi.org/10.1016/j.porgcoat.2005.07.006
[192] K.A. Yasakau, M.L. Zheludkevich, O.V. Karavai, M.G.S Ferreira, Influence of inhibitor addition on the corrosion protection performance of sol–gel coatings on AA2024, Prog. Org. Coat., 63 (2008) 352-361. https://doi.org/10.1016/j.porgcoat.2007.12.002
[193] M. Zaharescua, L.A. Predoana, A. Barau, D. Raps, F. Gammel, N.C. Rosero-Navarro, Y. Castro, A. Duran, M. Aparicio, SiO2 based hybrid inorganic–organic films doped with TiO2–CeO2 nanoparticles for corrosion protection of AA2024 and Mg-AZ31B alloys, Corros. Sci., 51 (2009) 1998-2005. https://doi.org/10.1016/j.corsci.2009.05.022
[194] E. Roussi, A. Tsetsekou, D. Tsiourvas, A. Karantonis, Novel hybrid organo-silicate corrosion resistant coatings based on hyperbranched polymers, Surf. Coat. Technol., 205 (2011) 3235-3244. https://doi.org/10.1016/j.surfcoat.2010.11.037
[195] L.M. Palomino, P.H. Suegama, I.V. Aoki, F.M. Montemor, H.G. De Melo, Electrochemical study of modified cerium–silane bi-layer on Al alloy 2024-T3, Corros. Sci., 51 (2009) 1238-1250. https://doi.org/10.1016/j.corsci.2009.03.012
[196] M.F. Montemor, M.G.S. Ferreira, Analytical characterization of silane films modified with cerium activated nanoparticles and its relation with the corrosion protection of galvanised steel substrates, Prog. Org. Coat., 63 (2008) 330-337. https://doi.org/10.1016/j.porgcoat.2007.11.008
[197] S. Li, J. Fu, Improvement in corrosion protection properties of TiO2 coatings by chromium doping, Corros. Sci., 68 (2013) 101-110. https://doi.org/10.1016/j.corsci.2012.10.040
[198] D. Zhu, W.J. van Ooij, Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl] tetrasulfide in sodium chloride solution: Part 2: mechanism for corrosion protection, Corros. Sci., 45 (2003) 2177-2197. https://doi.org/10.1016/S0010-938X(03)00061-1
[199] A.S. Hamdy, I. Doench, H. Mo¨hwald, Intelligent self-healing corrosion resistant vanadia coating for AA2024, Thin. Solid. Films, 520 (2011) 1668-1678. https://doi.org/10.1016/j.tsf.2011.05.080
[200] A.S. Hamdy, I. Doench, H. Mo¨hwald, Vanadia-based coatings of self-repairing functionality for advanced magnesium Elektron ZE41 Mg–Zn–rare earth alloy, Surf. Coat. Technol., 206 (2012) 3686-3692. https://doi.org/10.1016/j.surfcoat.2012.03.025
[201] M. Yuan, J. Lu, G. Kong, C. Che, Self healing ability of silicate conversion coatings on hot dip galvanized steels, Surf. Coat. Technol., 205 (2011) 4507-4513. https://doi.org/10.1016/j.surfcoat.2011.03.088
[202] A.S. Hamdy, I. Doench, H. Mo¨hwald, Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media, Electrochim. Acta, 56 (2011) 2493-2502. https://doi.org/10.1016/j.electacta.2010.11.103
[203] A.S. Hamdy, D.P. Butt, Novel smart stannate based coatings of self-healing functionality for AZ91D magnesium alloy, Electrochim. Acta, 97 (2013) 296-303. https://doi.org/10.1016/j.electacta.2013.02.108
[204] A. Yabuki, R.Kaneda, Barrier and self-healing coating with fluoro-organic compound for zinc. Mater. Corros. 60 (2009) 444-449. https://doi.org/10.1002/maco.200805100
[205] A. Yabuki, M. Sakai, Self-healing coatings of inorganic particles using a pH-sensitive organic agent, Corros. Sci., 53 (2011) 829-833. https://doi.org/10.1016/j.corsci.2010.11.021
[206] H.J. Yang, Y.T. Pei, J.C. Rao, J.T.M. De Hosson, Self-healing performance of Ti2AlC ceramic, J. Mater. Chem., 22 (2012) 8304-8313. https://doi.org/10.1039/c2jm16123k
[207] J. Gao, J. Suo, Effects of heating temperature and duration on the microstructure and properties of the self-healing coatings, Surf. Coat. Technol., 206 (2011) 1342-1350. https://doi.org/10.1016/j.surfcoat.2011.08.059
[208] C.-Y. Kuo, Y.-Y. Chen, S.-Y. Lu, A facile route to create surface porous polymer films via phase separation for antireflection applications, ACS Appl. Mater. Interf. 1 (2008) 72–75. https://doi.org/10.1021/am800002x
[209] H. Shimomura, Z. Gemici, R.E. Cohen, M.F. Rubner, Layer-by-Layer-Assembled High-Performance Broadband Antireflection Coatings, ACS Appl. Mater. Interf. 2 (2010) 813–820. https://doi.org/10.1021/am900883f
[210] F. Cebeci, Z. Wu, L. Zhai, R.E. Cohen, M.F. Rubner, Nanoporosity-driven superhydrophilicity:  a means to create multifunctional antifogging coatings, Langmuir., 22 (2006) 2856–2862. https://doi.org/10.1021/la053182p
[211] J.A. Howarter, J.P. Yougblood, self-cleaning and next generation anti-fog surfaces and coatings, Macromol. Rapid Commun., 29 (2008) 455–466. https://doi.org/10.1002/marc.200700733
[212] L. Zhang, Y. Li, J. Sun, J. Shen, Mechanically stable antireflection and antifogging coatings fabricated by the layer-by-layer deposition process and postcalcination, Langmuir., 24 (2008) 10851–10857. https://doi.org/10.1021/la801806r
[213] S. Grube, K. Siegmann, M. Hirayama, A moisture-absorbing and abrasion-resistant transparent coating on polystyrene, J. Coat. Technol. Res., 12 (2015) 669-680. https://doi.org/10.1007/s11998-015-9678-z
[214] W.S. Creasy, Hydrophilic polyvinylbutyral alloys. U.S. Patent 4, 847, 324, Juy 11, 1989.
[215] M. Funaki, M. Yoshida, Y. Shimauchi, A. Fujioka, K. Sakiyama, Coated materials and production thereof. U.S. Patent 4, 242, 412, December 30, 1980.
[216] I.J. Haller, Covalently attached organic monolayers on semiconductor surfaces, Am. Chem. Soc., 100 (1978) 8050–8055. https://doi.org/10.1021/ja00494a003
[217] H. Hosono, T. Taniguchi, Anti-Fogging Film, U.S. Patent 5, 134, 021, July 28, 1992.
[218] H. Hosono, T. Taniguchi, M. Nishii, Process for Preparation of Anti-Fogging Coating, U.S. Patent 5, 075, 133, December 24, 1991.
[219] B.L. Laurin, Abrasion and antifog-resistant optical element, U.S. Patent 4, 127, 682, November 28, 1978.
[220] N.E. Petersen, Anti-fogging surgical mask, U.S. Patent 4, 419, 993, December 13, 1983.
[221] J.A.J. Sanders, M.J. Larson, Transparent anti-fog compositions, U.S. Patent 4,615,738, October 7, 1986.
[222] M. Haga, Y. Onisawa, K. Shimizu, Plastic lenses and method of producing the same, U.S. Patent 5, 985, 420, November 16, 1999.
[223] J.C. Song, Transparent anti-fog coating, U.S. Patent 5, 804, 612, September 8, 1998.
[224] H. Eggers, R. Klein, C. Muller, R. Brandt, Multilayer film with lamination and heat-sealable sides, and having antifogging properties, U.S. Patent 6, 576, 348, December 12, 2002.
[225] H. Lee, M. L. Alcaraz, M. F. Rubner, R. E. Cohen, Zwitter-wettability and antifogging coatings with frost-resisting capabilities, ACS Nano, 7 (2013) 2172–2185. https://doi.org/10.1021/nn3057966
[226] H. Nagasawa, M. Nakamura, M. Ishida, H. Ohsawa, T. Hoga, Antifogging agent composition. U.S. Patent 2003/0127625 A1, July 10, 2003.
[227] S. Yamazaki, N. Murata, H. Yamamoto, Article with antifogging film and process for producing same, U.S. Patent 6,420,020 B1, July 16, 2002.
[228] S. Yamazaki, N. Murata, H. Yamamoto, Article with antifogging film and process for producing same, U.S. Patent 6, 531, 215, March 11, 2003.
[229] A.A. Kruger, P. Chartier. Anti-fogging coating composition, product coated with said composition for preparation of said product, U.S. Patent 5, 578, 378, November 26, 1996.
[230] M. Keller, M. Lenhard, Substrate and polymerizable mixture, method of manufacturing of said polymerizable mixture, and method of manufacturing of a nonfogging or low fogging layer, U.S. Patent 5, 648, 441, July 15, 1997.
[231] Y. Oshibe, Y. Yamamoto, H. Ohmura, K. Kumazawa, Composition of ultraviolet curing antifogging agent and process for forming antifogging coating film, U.S. Patent 5, 244, 935, September 14, 1993.
[232] Y. Oshibe, Y. Yammamoto, H. Ohmura, K. Kumazawa, Anti-fogging resin film-forming composition, U.S. Patent 5, 180, 760, January, 19, 1993.
[233] P. Chevallier, S. Turgeon, C. Sarra-Bournet, R. Turcotte, G. Laroche, Characterization of multilayer anti-fog coatings, ACS Appl. Mater. Interf., 3 (2011) 750–758. https://doi.org/10.1021/am1010964