Production of Composite Green Polymers and Their Effects on the Environment

$15.95

Production of Composite Green Polymers and Their Effects on the Environment

Santanu Sarkar, Chiranjib Bhattacharjee, Supriya Sarkar

Nowadays several disadvantages regarding the application of synthetic composites encourages the use of green composite polymers instead. The main disadvantages like disposal problem, non-biodegradability are fully resolved by using natural fiber reinforced polymers. Green composites consist of both biodegradable natural reinforcement and a polymer matrix. Biocomposites are mainly used in the automotive and construction sectors. Research regarding the development of green composites is ongoing globally in the polymer science to improve efficiency and applicability of these materials. Moreover, the use of green composites started the reuse of agricultural waste. In this chapter, the sources of different types of green fibers and natural oil based polymers have been discussed. Further, several methods for the preparation and application of thermoplastic and thermosetting bio-based composite polymers are reviewed.

Keywords
Composite Polymers, Natural Fibers, Agricultural Wastes, Natural Oil, Biodegradable

Published online 1/2/2018, 40 pages

DOI: http://dx.doi.org/10.21741/9781945291470-1

Part of Smart Polymers and Composites

References
[1] D. Hull, T.W. Clyne. An introduction to composite materials. Cambridge University Press, Cambridge, 1996. https://doi.org/10.1017/CBO9781139170130
[2] E.S. Stevens, Green Plastics, Princeton University Press, Princeton, USA, 2002.
[3] K. S. Miller, M.T. Chiang, J.M. Krochta. Heat curing of whey protein films, J. Food Sci., 62 (1997) 1189–1193. https://doi.org/10.1111/j.1365-2621.1997.tb12241.x
[4] P. Lodha, A.N. Netravali. Characterization of interfacial and mechanical properties of green composites with soy protein isolate and ramie fiber, J. Mater. Sci., 37 (2002) 3657–3665. https://doi.org/10.1023/A:1016557124372
[5] S. Nam and A. N. Netravali, Interfacial and mechanical properties of ramie fiber and soy protein ”green” composites, ICCE-9, San Diego, California’s (2002) 551-552.
[6] A. Gennadios, C.L. Weller. Edible films and coatings from wheat and corn proteins, Food Technol., 44 (1990) 63–69.
[7] L. Krull, G. Inglett. Industrial Uses of Gluten, Cereal Sci. Today, 16 (1971) 232–236.
[8] J.R. Barone, W.F. Schmidt, C.F.E. Liebner. Compounding and molding of polyethylene composites reinforced with keratin feather fiber, Compos. Sci. Technol., 65 (2005) 683-692. https://doi.org/10.1016/j.compscitech.2004.09.030
[9] N. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.E. Nava-Saucedo. Polymer biodegradation: mechanisms and estimation techniques, Chemosphere 73 (2008) 429-442. https://doi.org/10.1016/j.chemosphere.2008.06.064
[10] S. Kalia, K. Georgios, A. Silva, S. Furtado. Applications of green composite materials, Biodegradable Green Composites, John Wiley & Sons, Inc, (2016) 312-337. https://doi.org/10.1002/9781118911068
[11] K.L. Pickeringa, M.G.A. Efendya, T.M. Le, A review of recent developments in natural fibre composites and their mechanical performance, Composites Part A: Applied Science and Manufacturing, 83 (2016) 98-112. https://doi.org/10.1016/j.compositesa.2015.08.038
[12] L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, M. Saiful Islam, A review on natural fiber reinforced polymer composite and its applications, Inter. J. Polym. Sci. 2015 (2015) 1-15., Article ID 243947, doi:10.1155/2015/243947.
[13] O. Faruk, A. K. Bledzki, H-P. Fink, M. Sain. Progress report on natural fiber reinforced composites, you have free access to this content, Macromol. Mater. Eng., 299 (2014) 9–26. https://doi.org/10.1002/mame.201300008
[14] D. Briassoulis. Mechanical behaviour of biodegradable agricultural films under real field conditions, Polym. Deg. Stab., 91 (2006) 1256-1272. https://doi.org/10.1016/j.polymdegradstab.2005.09.016
[15] J.K. Pandey, W.S. Chu, C.S. Lee, S.H. Ahn. Preparation characterization and performance evaluation of nanocomposites from natural fiber reinforced biodegradable polymer matrix for automotive applications. Presented at the International Symposium on Polymers and the Environment: Emerging Technology and Science. Bio Environmental Polymer Society (BEPS), Vancouver, WA, USA, 17–20th October 2007.
[16] S.R. Sinha, M. Bousmina. Biodegradable polymer/layered silicate nanocomposites. In Polymer Nanocomposites; Woodhead Publishing and Maney Publishing: Cambridge, England, 57-129.
[17] M.J. John, S. Thomas, Biofibres and biocomposites, Carbohyd. Polym., 71 (2008) 343-364. https://doi.org/10.1016/j.carbpol.2007.05.040
[18] E. Witten. Composites Market: Market Developments, Challenges, and Chances, AVK Federation of Reinforced Plastics, Germany (2010).
[19] F.P. La Mantia, M. Morreale. Green composites: A brief review, Compos. A. Appl. Sci. Manuf., 42 (2011) 579-588. https://doi.org/10.1016/j.compositesa.2011.01.017
[20] A.K. Bledzki, S. Reihmane, J. Gassan. Properties and modification methods for vegetable fibers for natural fiber composites, J. Appl. Polym. Sci., 59 (1996) 1329-1336. https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0
[21] A.K. Mohanty, M. Misra, G. Hinrichsen. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol, Mater. Eng., 1 (2000) 276-277. https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
[22] L.A. Pothan, S. Thomas. Polarity parameters and dynamic mechanical behavior of chemically modified banana fiber reinforced polyester composites, Compos. Sci. Technol., 63 (2003) 1231-1240. https://doi.org/10.1016/S0266-3538(03)00092-7
[23] L.F. Zemljic, P. Stenius, J. Stana-kleinschek, V. Ribitsch. Characterization of cotton fibers modified by carboxymethyl cellulose, Lenzinger Berichte, 85 (2006) 68-76.
[24] H.Y. Cheung, M.P. Ho, K.T. Lau, F. Cardona, D. Hui. Natural fibre-reinforced composites for bioengineering and environmental engineering applications, Compos. B: Eng., 40 (2009) 655-663. https://doi.org/10.1016/j.compositesb.2009.04.014
[25] N. Reddy, Y. Yang. Properties and potential application of natural cellulose fibers from the bark of cotton stalks, Bioresource Technol, 100 (2009) 3563-3569. https://doi.org/10.1016/j.biortech.2009.02.047
[26] P. Wambua, J. Ivens, I. Verpoest. Natural fibers: Can they replace glass in fiber reinforced plastics?, Compos. Sci. Technol., 63 (2003) 1259-1264. https://doi.org/10.1016/S0266-3538(03)00096-4
[27] N. Reddy, Y. Yang. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems, Bioresource Technol., 99 (2008) 2449-2454. https://doi.org/10.1016/j.biortech.2007.04.065
[28] N. Reddy, Y. Yang. Natural Cellulose fibers from switchgrass with tensile properties similar to cotton and linen, Biotechnol. Bioeng., 97 (2007) 1021-1027. https://doi.org/10.1002/bit.21330
[29] E. Bodros, C. Baley. Study of the tensile properties of stinging nettle fibers (Urtica dioica), Mater. Lett., 62 (2008) 2143-2145. https://doi.org/10.1016/j.matlet.2007.11.034
[30] S.K. Batra. Other long vegetable fibers. In Handbook of Fiber Science and Technology. Marcel Dekker Fiber Chemistry: New York, NY, USA, 4 (1998) 727.
[31] K. Goda, M.S. Sreekala, A. Gomes, T. Kaji, J. Ohgi. Improvement of plant based natural fibers for toughening green composites—Effect of load application during mercerization of ramie fibers, Compos. Part A Appl. Sci. Manuf., 37 (2006) 2213-2220. https://doi.org/10.1016/j.compositesa.2005.12.014
[32] N. Reddy, Y. Yang. Natural cellulose fibers from soybean straw, Bioresource Biotechnol., 2009 (100) 3593-3598.
[33] C. Baley. Analysis of the flax fiber tensile behavior and analysis of the tensile stiffness increase, Compos. Part A Appl. Sci. Manuf., 33 (2002) 939-948. https://doi.org/10.1016/S1359-835X(02)00040-4
[34] M. Sain, S. Panthapulakkal. Bioprocess preparation of wheat straw fibers and their characterization, Ind. Crops Products, 23 (2006) 1-8. https://doi.org/10.1016/j.indcrop.2005.01.006
[35] S. Panthapulakka, A. Zereshkian, M. Sain. Preparation and characterization of wheat straw for reinforcing application in injection molded thermoplastic composites, Bioresource Biotechnol., 97 (2006) 265-272. https://doi.org/10.1016/j.biortech.2005.02.043
[36] N. Reddy, Y. Yang. Properties of natural cellulose fibers from hop stems, Carbohyd. Polym., 77 (2009) 898-902. https://doi.org/10.1016/j.carbpol.2009.03.013
[37] N. Reddy, Y. Yang. Structure and properties of high quality natural cellulose fibers from corn stalks, Polymer, 46 (2005) 5494-5500. https://doi.org/10.1016/j.polymer.2005.04.073
[38] D.N. Saheb, J.P. Jog. Natural fiber polymer composites: a review, Adv. Polym. Technol., 18 (1999) 351-363. https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
[39] P. Gatenholm, J. Kubat, A. Mathiasson. Biodegradable natural composites. I. Processing and properties, J. Appl. Polym. Sci., 45 (1992) 1667-1677. https://doi.org/10.1002/app.1992.070450918
[40] S.M. Lee, D. Cho, W.H. Park, S.G. Lee, S.O. Han, L.T. Drzal. Novel silk/poly(butylene succinate) biocomposites: the effect of short fibre content on their mechanical and thermal properties. Compos. Sci. Technol., 65 (2005) 647-657. https://doi.org/10.1016/j.compscitech.2004.09.023
[41] Z. Shao, F. Vollrath. Surprising strength of silkworm silk, Nature., 418 (2002) 741-741. https://doi.org/10.1038/418741a
[42] T. Arai, G. Freddi, R. Innocenti, M. Tsukada. Preparation of water-repellent silks by a reaction with octadecenylsuccinic anhydride, J. Appl. Polym. Sci., 89 (2003) 324-332. https://doi.org/10.1002/app.12081
[43] J. Summerscales, N.P.J. Dissanayake, A.S. Virk, W. Hall. A review of bast fibres and their composites. Part 1 – Fibres as reinforcements, Compos. A: Appl. Sci. Manuf., 41 (2010) 1329-1335. https://doi.org/10.1016/j.compositesa.2010.06.001
[44] Y. Zou, H. Xu, Y. Yang. Lightweight polypropylene composites reinforced by long switchgrass stems, J. Polym. Environ., 18 (2010) 464-473. https://doi.org/10.1007/s10924-010-0165-4
[45] W. Liu, A.K. Mohanty, L.T. Drzal, M. Misra. Novel biocomposites from native grass and soy based bioplastics: processing and properties evaluation, Indus. Eng. Chem. Res., 44 (2005) 7105–7112. https://doi.org/10.1021/ie050257b
[46] M.R. Vignon, D. Dupeyre, C. Garcia-Jaldon. Morphological characterization of steam exploded hemp fibers and their utilization in propylene-based composites, Bioresource Biotechnol., 58 (1996) 203-215. https://doi.org/10.1016/S0960-8524(96)00100-9
[47] M.M. Thwe, K. Liao. Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites, Compos. Part A Appl. Sci. Manuf., 33 (2002) 43-52. https://doi.org/10.1016/S1359-835X(01)00071-9
[48] Y. Lu, L. Weng, X. Cao. Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites, Carbohyd. Polym., 63 (2006) 198-204. https://doi.org/10.1016/j.carbpol.2005.08.027
[49] E. Bodros, I. Pillin, N. Montrelay, C. Baley. Could biopolymers reinforced by randomly scattered flax fiber be used in structural applications? Compos. Sci. Technol., 67 (2007) 462-470. https://doi.org/10.1016/j.compscitech.2006.08.024
[50] A.S. Singha, V.K. Thakur. Mechanical properties of natural fiber reinforced polymer composites, Bull. Mater. Sci., 31 (2008) 791-799. https://doi.org/10.1007/s12034-008-0126-x
[51] H.H.C. Azeredo, L.H.C. Mattoso, D. Wood, T.G. Williams, R.J. Avena-Bustillos, T.H. Mchugh. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers, J. Food Sci., 74 (2009) 31-35. https://doi.org/10.1111/j.1750-3841.2009.01186.x
[52] S. Ochi. Mechanical properties of Kenaf fibers and Kenaf/PLA composites, Mech. Mater., 40 (2008) 446-452. https://doi.org/10.1016/j.mechmat.2007.10.006
[53] N. Reddy. Extraction and characterization of natural cellulose fibers from common milkweed stems, Polym. Eng. Sci., 49 (2009) 2212-2217. https://doi.org/10.1002/pen.21469
[54] L. Famá, L. Gerschenson, S. Goyanes. Starch-vegetable fiber composites to protect food products, Carbohyd. Polym., 75 (2009) 230-235. https://doi.org/10.1016/j.carbpol.2008.06.018
[55] A. Kaushik, M. Singh, G. Verma. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw, Carbohyd. Polym., 82 (2010) 337-345. https://doi.org/10.1016/j.carbpol.2010.04.063
[56] P. Qu, Y. Gao, G. Wu, L. Zhang. Nanocomposites of poly (lactic acid) reinforced with cellulose nanofibrils. BioResources, 5 (2010) 1811-1823.
[57] D. Liu, T. Zhong, P.R. Chang, K. Li, Q. Wu. Starch composites reinforced by bamboo cellulosic crystals, Bioresource Technol., 101 (2010) 2529-2536. https://doi.org/10.1016/j.biortech.2009.11.058
[58] J.L. Guimarães, F. Wypych, C.K. Saul, L.P. Ramos, K.G. Satyanarayana. Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil, Carbohyd. Polym., 80 (2010) 130-138. https://doi.org/10.1016/j.carbpol.2009.11.002
[59] A. Ashori, A. Nourbakhsh. Bio-based composites from waste agricultural residues, Waste Manag., 30 (2010) 680-684. https://doi.org/10.1016/j.wasman.2009.08.003
[60] S.L. Favaro, M.S. Lopes, A.G. Vieira de Carvalho Neto, R. Rogerio de Santana, E. Radovanovic. Chemical, morphological, and mechanical analysis of rice husk/postconsumer polyethylene composites, Compos. A: Appl. Sci. Manuf., 41 (2010) 154-160. https://doi.org/10.1016/j.compositesa.2009.09.021
[61] D.P. Pfister, R.C. Larock. Green composites from a conjugated linseed oil-based resin and wheat straw, Compos. A: Appl. Sci. Manuf., 41 (2010) 1279-1288. https://doi.org/10.1016/j.compositesa.2010.05.012
[62] S. Ahankari,A.K. Mohanty, M. Misra. Mechanical behaviour of agro-residue reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate), (PHBV) green composites: A comparison with traditional polypropylene composites, Compos. Sci.Technol., 71 (2011) 653- 657. https://doi.org/10.1016/j.compscitech.2011.01.007
[63] N. Reddy, Y. Yang. Properties and potential applications of natural cellulose fibers from cornhusks, Green Chem., 7 (2005) 190-195. https://doi.org/10.1039/b415102j
[64] A. Blicblau, R. Coutts, A. Sims. Novel composites utilizing raw wool and polyester resin, J. Mater. Sci. Lett., 16 (1997) 1417-1419. https://doi.org/10.1023/A:1018517512425
[65] Y. Zhao, H.Y. Cheung, K.T. Lau, C.L. Lau, D.D. Zhao, H.L. Li. Silkworm silk/poly(lactic acid) biocomposites: Dynamic mechanical, thermal and biodegradable properties, Polym. Degrad. Stab., 95 (2010) 1978-1987. https://doi.org/10.1016/j.polymdegradstab.2010.07.015
[66] C.K. Hong, R.P. Wool. Development of a bio-based composite material from soybean oil and keratin fibers, J. Appl. Polym. Sci.,95 (2005) 1524-1538. https://doi.org/10.1002/app.21044
[67] A.J.F. Carvalho, A.A.S. Curvelo, J.A.M.A. Agnelli. First insight on composites of thermoplastic starch and kaolin, Carbohyd. Polym., 45 (2001) 189-194. https://doi.org/10.1016/S0144-8617(00)00315-5
[68] J.K. Pandey, R.P. Singh. Green nanocomposites from renewable resources: Effect of plasticizer on the structure and material properties of clay-filled starch, Starch., 57 (2005) 8-15. https://doi.org/10.1002/star.200400313
[69] J. Guan, M.A. Hanna. Selected morphological and functional properties of extruded acetylated starch-cellulose foams, Bioresource Technol., 97 (2006) 1716-1726. https://doi.org/10.1016/j.biortech.2004.09.017
[70] A.P. Kumar, R.P. Singh. Biocomposites of cellulose reinforced starch: Improvement of properties by photo-induced crosslinking, Bioresource Technol., 99 (2008) 8803-8809. https://doi.org/10.1016/j.biortech.2008.04.045
[71] X.F. Ma, J.G. Yu, N. Wang. Fly ash-reinforced thermoplastic starch composites, Carbohyd. Polym., 67 (2007) 32-39. https://doi.org/10.1016/j.carbpol.2006.04.012
[72] A. Svagan. Bio-inspired cellulose Nanocomposites and foams based on starch matrix. PhD thesis, Department of Fiber and Polymer Technology, KTH Chemical Science and Engineering, SE-100 44, Stockholm, Sweden, 2008.
[73] M. Avella, E. Martuscelli, B. Pascucci, M. Raimo, B. Focher, A. Marzetti. A new class of biodegradable materials: Poly-3-hydroxy-butyrate/steam exploded straw fiber composites, I. Thermal and impact behavior, J. Appl. Polym. Sci., 49 (1993) 2091-2103. https://doi.org/10.1002/app.1993.070491205
[74] B.S. Kaith, R. Jindal, A.K. Jana, M. Maiti. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers—Evaluation of thermal, physico-chemical and mechanical propertie, Bioresource Technol., 101 (2010) 6843-6851. https://doi.org/10.1016/j.biortech.2010.03.113
[75] N. Ogata, G. Jimenez, H. Kawai, T. Ogihara. Structure and thermal/mechanical properties of poly(L-lactide)-clay blend, J. Polym. Sci. Part B: Polym. Phys., 35 (1997) 389-96. https://doi.org/10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E
[76] R.S. Sinha, K. Okamoto, K. Yamada, M. Okamoto. Novel porous ceramic material via burning of polylactide/layered silicate nanocomposite, Nano Letts., 2 (2002) 423-426. https://doi.org/10.1021/nl020284g
[77] R.S. Sinha, K. Yamada, M. Okamoto, K. Ueda. New polylactide/layered silicate nanocomposite: A novel biodegradable material, Nano Letts., 2 (2002) 1093-1096. https://doi.org/10.1021/nl0202152
[78] R.S. Sinha, P. Maiti, M. Okamoto, K. Yamada, K. Ueda. New polylactide/layered silicate nanocomposites. 1. Preparation, characterization and properties., Macromolecule, 35 (2002) 3104-3110. https://doi.org/10.1021/ma011613e
[79] R.S. Sinha, K. Yamada, A. Ogami, M. Okamoto, K. Ueda. New polylactide layered silicate nanocomposite: Nanoscale control of multiple properties. Macromol, Rapid Commun., 23 (2002) 493-497.
[80] R.S. Sinha, M. Okamoto, K. Yamada, K. Ueda. New biodegradable polylactide/layered silicate nanocomposites: peparation, characterization and materials properties., Macromolecules, 35 (2002) 659-660.
[81] R.S. Sinha, M. Okamoto, K. Yamada, K. Ueda. New polylactide/layered silicate nanocomposites: Concurrent improvement of materials properties and biodegradability, Polymer., 44 (2003) 857-866. https://doi.org/10.1016/S0032-3861(02)00818-2
[82] K. Yamada, K. Ueda, R.S. Sinha, M. Okamoto. Preparation and properties of polylactide/layered silicate nanocomposites, Kobunshi Robunshu., 59 (2002) 760-765. https://doi.org/10.1295/koron.59.760
[83] P. Maiti, K. Yamada, M. Okamoto, K. Ueda, K. Okamoto. New polylactide/layered silicate nanocomposites: role of organoclay, Chem. Mater., 14 (2002) 4654-4661. https://doi.org/10.1021/cm020391b
[84] M.A. Paul, M. Alexandre, P. Degee, C. Calberg, R. Jerome, P. Dubois. Exfoliated polylactide/clay nanocomposites by in-situ coordination-insertion polymerization, Macromol., Rapid Commun., 24 (2003) 561-566. https://doi.org/10.1002/marc.200390082
[85] J.H. Lee, T.G. Park, H.S. Park, D.S. Lee, Y.K. Lee, S.C. Yoon, J.D. Nam. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold, Biomaterials, 24 (2002) 2773-2778. https://doi.org/10.1016/S0142-9612(03)00080-2
[86] J. Chang, Y.U. An, D. Cho, E.P. Giannelis. Poly (lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II), Polymer, 44 (2003) 3715–3720. https://doi.org/10.1016/S0032-3861(03)00276-3
[87] D. Bondeson, K. Oksman. Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites, Compos. Interface, 14 (2007) 617-630. https://doi.org/10.1163/156855407782106519
[88] S. Lee, I. Kang, G. Doh, H. Yoon, B. Park, Q. Wu. Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment, J. Thermoplast. Compos. Mater., 21 (2008) 209-223. https://doi.org/10.1177/0892705708089473
[89] M. Misra, H. Park, A.K. Mohanty, L.T. Drzal. Injection molded ‘Green’ nanocomposite materials from renewable resources. Presented at the Global Plastics Environmental Conference, Detroit, MI, USA, 18–19 February 2004.
[90] S.K. Mahadeva, S. Yun, J. Kim. Flexible humidity and temperature sensor based on cellulose-polypyrrole nanocomposite, Sensor. Actuator. A Phys., 165 (2011) 194-199.
[91] S. Tunç, O. Duman. Preparation of active antimicrobial methyl cellulose/carvacrol /montmorillonite nanocomposite films and investigation of carvacrol release, Food Sci. Technol., 44 (2011) 465-472. https://doi.org/10.1016/j.lwt.2010.08.018
[92] K.A. Zimmermann, J.M. LeBlanc, K.T. Sheets, R.W. Fox, P. Gatenholm. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications, Mater. Sci. Eng., 31 (2011) 43-49. https://doi.org/10.1016/j.msec.2009.10.007
[93] S. Zadegan, M. Hosainalipour, H.R. Rezaie, H. Ghassai, M.A. Shokrgozar. Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride, Mater. Sci. Eng., 31 (2011) 954-961. https://doi.org/10.1016/j.msec.2011.02.021
[94] M.A. Sithique, M. Alagar. Preparation and properties of bio-based nanocomposites from epoxidized soy bean oil and layered silicate, Malaysian Polym. J., 5 (2010) 151-161.
[95] M. Wollerdorfer, H. Bader. Influence of natural fibres on the mechanical properties of biodegradable polymers, Indus. Crops Prod., 8 (1998) 105-112. https://doi.org/10.1016/S0926-6690(97)10015-2
[96] J.S. Tate, A.T. Akinola, D. Kabakov. Bio-based Nanocomposites: An Alternative to Traditional Composites, J. Technol. Stud., 1 (2010) 25-32.
[97] T.Y. Ke, X.Z. Sun. Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends, J. Appl. Polym. Sci., 81 (2001) 3069-82. https://doi.org/10.1002/app.1758
[98] T. Uesaka, K. Nakane, S. Maeda, T. Ogihara, N. Ogata. Structure and physical properties of poly(butylene succinate)/cellulose acetate blends, Polymer, 41 (2000) 8449-8454. https://doi.org/10.1016/S0032-3861(00)00206-8
[99] C.D. Kesel, C.V. Wauven, C. David. Biodegradation of polycaprolactone and its blends with poly(vinylalcohol) by micro-organisms from a compost of house- hold refuse, Polym. Degrad. Stab., 55 (1997) 107-113. https://doi.org/10.1016/0141-3910(95)00138-7
[100] L. Averous, N. Fauconnier, L. Moro. Fringant blends of thermoplastic starch and polyesteramide: processing and properties, J. Appl. Polym. Sci., 76 (200) 1117-1128.
[101] J.L. Willett, R.L. Shogren. Processing and properties of extruded starch/polymer foams, Polymer, 43 (2002) 5935-5947. https://doi.org/10.1016/S0032-3861(02)00497-4
[102] O. Martin, L. Averous. Poly (lactic acid): Plasticization and properties of biodegradable multiphase systems, Polymer, 42 (2001) 6209-6219. https://doi.org/10.1016/S0032-3861(01)00086-6
[103] P. Sarazin, G. Li, W.J. Orts, B.D. Favis. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch, Polymer, 49 (2008) 599- 609. https://doi.org/10.1016/j.polymer.2007.11.029
[104] K. Majdzadeh-Ardakani, Sh. Sadeghi-Ardakani. Experimental investigation of mechanical properties of Starch/natural rubber/clay nanocomposites, Digest J. Nanomater. Biostruct, 5 (2010) 307-316.
[105] P. Maiti, C.A. Batt, E.P. Giannelis. Renewable plastics: Synthesis and properties of PHB nanocomposites, Polym. Mater. Sci. Eng., 88 (2003) 58-59.
[106] J.P. Zheng, P. Li, Y.L. Ma, K.D. Yao. Gelatine/montmorillonite hybrid nanocomposite – preparation and properties, J. Appl. Polym. Sci., 86 (2002) 1189-1194. https://doi.org/10.1002/app.11062
[107] A. Takegawa, M. Murakami, Y. Kaneko, J. Kadokawa. Preparation of chitin/cellulose composite gels and films with ionic liquids, Carbohyd. Polym., 79 (2010) 85-90. https://doi.org/10.1016/j.carbpol.2009.07.030
[108] M.R.S. Nunes, R.C. Silva, Jr. J.G. Silva, J. Tonholo, A.S. Ribeiro. Preparation and morphological characterization of chitosan/clay nanocomposites. In Proceedings of the 11th International Conference on Advanced Materials, Rio de jenero, Brazil, 20–25 September (2009) 20-25.
[109] R. Talreja, J.A.E. Ma˚nson. Polymer Matrix Composites. Elsevier Science, Amsterdam, Netherlands, (2001) 403-432.
[110] P.A. Fowler, J.M. Hughes, R.M. Elias, Biocomposites: technology, environmental credentials and market forces, J. Sci. Food. Agric., 86 (2006) 1781-1789. https://doi.org/10.1002/jsfa.2558
[111] A.K. Bledzki, J. Gassan. Composites reinforced with cellulose based fibers, Prog. Polym. Sci., 24 (1999) 221-274. https://doi.org/10.1016/S0079-6700(98)00018-5
[112] A. Arbelaiz, B. Fernandez, J.A. Ramos, I. Mondragon. Thermal and crystallization studies of short flax fibre reinforced polypropylene matrix composites: Effect of treatments, Thermochim. Acta, 440 (2006) 111-121. https://doi.org/10.1016/j.tca.2005.10.016
[113] M.N. Belgacem, A. Gandini. The surface modification of cellulose fibres for use as reinforcing elements in composite materials, Compos. Interf., 12 (2005) 41-75. https://doi.org/10.1163/1568554053542188
[114] J. George, M.S. Sreekala, S. Thomas. A review on interface modification and characterization of natural fiber reinforced plastic composites., Polym. Eng. Sci., 41 (2001) 1471-1485. https://doi.org/10.1002/pen.10846
[115] S. Kalia, B.S. Kaith, I. Kaur. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review, Polym. Eng. Sci., 49 (2009) 1253-1272. https://doi.org/10.1002/pen.21328
[116] D. Maldas, B.V. Kokta, R.G. Raj, C. Daneault. Improvement of the mechanical properties of sawdust wood fibre—polystyrene composites by chemical treatment, Polymer, 29 (1988) 1255-1265. https://doi.org/10.1016/0032-3861(88)90053-5
[117] M. Baiardo, G. Frisoni, M. Scandola, A. Licciardello. Surface chemical modification of natural cellulose fibers, J. Appl. Polym. Sci., 83 (2002) 38-45. https://doi.org/10.1002/app.2229
[118] M. Baiardo, E. Zini, M. Scandola. Flax fibre-polyester composites, Compos. A: Appl. Sci. Manuf., 35 (2004) 703-710. https://doi.org/10.1016/j.compositesa.2004.02.004
[119] G. Frisoni, M. Baiardo, M. Scandola, D. Lednicka, M.C Cnockaert, J. Mergaert, J. Swings. Natural Cellulose Fibers:  Heterogeneous acetylation kinetics and biodegradation behavior, Biomacromolecules, 2 (2001) 476-482. https://doi.org/10.1021/bm0056409
[120] E. Zini, M. Scandola, P. Gatenholm. Heterogeneous Acylation of Flax Fibers. Reaction Kinetics and Surface Properties, Biomacromolecules, 4 (2003) 821-827. https://doi.org/10.1021/bm034040h
[121] E. Zini, M. Baiardo, M. Scandola. Biodegradable polyesters reinforced with surface-modified vegetable fibers, Macromol. Biosci., 4 (2004) 286-295. https://doi.org/10.1002/mabi.200300120
[122] E. Zini, M.L. Focarete, I. Noda, M. Scandola. Bio-composite of bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) reinforced with vegetable fibers, Compos. Sci. Technol., 67 (2007) 2085-2094. https://doi.org/10.1016/j.compscitech.2006.11.015
[123] P. Tran, D. Graiver, R. Narayan. Biocomposites synthesized from chemically modified soy oil and biofibers, J. Appl. Polym. Sci., 102 (2006) 69-75. https://doi.org/10.1002/app.22265
[124] N. Lee, O.J. Kwon, B. Chun, J. Cho, J.S. Park. Characterization of castor oil/polycaprolactone polyurethane biocomposites reinforced with hemp fibers, Fibers Polym., 10 (2009) 154-160. https://doi.org/10.1007/s12221-009-0154-1
[125] K.S. Thomas, C. Pavithran. Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites, Polymer, 37 (1996) 5139-5149. https://doi.org/10.1016/0032-3861(96)00144-9
[126] N.M. Belgacem, P. Bataille, S. Sapieha. Effect of corona modification on the mechanical properties of polypropylene/cellulose composites, J. Appl. Polym., Sci. 53 (1994) 379-385. https://doi.org/10.1002/app.1994.070530401
[127] Z.F. Li, A.N. Netravali. Surface modification of UHSPE fibres through allylamine plasma deposition II. Effect on fibre and fibre/epoxy interface, J. Appl. Polym. Sci., 44 (1992) 333-346. https://doi.org/10.1002/app.1992.070440217
[128] J. Gassan, V.S. Gutowski. Effect of corona discharge and UV treatment on the properties of jute–fiber epoxy composites, Compos. Sci. Technol., 60 (2000) 2857-2863. https://doi.org/10.1016/S0266-3538(00)00168-8
[129] C.S. Wu. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability, Polym. Degrad. Stab., 94 (2009) 1076-1084. https://doi.org/10.1016/j.polymdegradstab.2009.04.002
[130] R. Karnani, M. Krishnan, R. Narayan. Biofiber-reinforced polypropylene composites, Polym. Eng. Sci., 37 (1997) 476-483. https://doi.org/10.1002/pen.11691
[131] G. Canche´-Escamilla, J.I. Cauich-Cupul, E. Mendizabal, H. Vazquez-Torres, P.J. Herrera-Franco, Mechanical properties of acrylate-grafted henequen cellulose fibers and their application in composites, Compos A., 30 (1999) 349-359. https://doi.org/10.1016/S1359-835X(98)00116-X
[132] A.L. Martinez-Hernandez, C. Velasco-Santos, M.D. Icaza, V.M. Castano. Grafting of methyl methacrylate onto natural keratin, e-Polymers, 16 (2003) 1-11.
[133] S. Wong, R.A. Shanks, A. Hodzic. Effect of additives on the interfacial strength of poly (l-lactic acid) and poly (3-hydroxy butyric acid)-flax fibre composites, Compos. Sci. Technol., 67 (2007) 2478-2484. https://doi.org/10.1016/j.compscitech.2006.12.016
[134] S.N. Khot, J.J. Lascala, E. Can, S.S. Morye, G.I. Williams, G.R. Palmese, S.H. Kusefoglu, R.P. Wool. Development and application of triglyceride-based polymers and composites, J. Appl. Polym. Sci., 82 (2001) 703-723. https://doi.org/10.1002/app.1897
[135] B.N. Melo, C.G. dos-Santos, V.R. Botaro, V.M.D. Pasa. Eco-composites of polyurethane and Luffa aegyptiaca modified by mercerisation and benzylation, Polym. Polym. Compos., 16 (2008) 249-256.
[136] K. Adekunle, D. Akesson, M. Skrifvars. Biobased composites prepared by compression molding with a novel thermoset resin from soybean oil and a natural fiber reinforcement, J. Appl. Polym. Sci., 116 (2010) 1759-1765. https://doi.org/10.1002/app.31634
[137] S. Dutta, N. Karak, S. Baruah. Jute-fiber-reinforced polyurethane green composites based on Mesua ferrea L. seed oil, J. Appl. Polym. Sci., 115 (2010) 843-850. https://doi.org/10.1002/app.30357
[138] N. Boquillon. Use of an epoxidized oil-based resin as matrix in vegetable fibers-reinforced composites, J. Appl. Polym. Sci., 101 (2006) 4037-4043. https://doi.org/10.1002/app.23133
[139] Z. Liu, S.Z. Erhan, D.E. Akin, F.E. Barton. “Green” composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites, J. Agric. Food Chem., 54 (2006) 2134-2137. https://doi.org/10.1021/jf0526745
[140] R.V. Silva, D. Spinelli, W.W.B. Filho, S.C. Neto, G.O. Chierice, J.R. Tarpani. Fracture toughness of natural fibers/castor oil polyurethane composites, Compos. Sci. Technol., 66 (2006) 1328-1335. https://doi.org/10.1016/j.compscitech.2005.10.012
[141] G.I. Williams, R.P. Wool. Composites from natural fibers and soy oil resins, Appl. Compos. Mater., 7 (2000) 421-432. https://doi.org/10.1023/A:1026583404899
[142] N. Graupner, A.S. Herrmann, J.M. Ssig. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas, Compos. A: Appl. Sci. Manuf., 40 (2009) 810-821. https://doi.org/10.1016/j.compositesa.2009.04.003
[143] E.R. Coats, F.J. Loge, M.P. Wolcott, K. Englund, A.G. McDonald. Production of natural fiber reinforced thermoplastic composites through the use of polyhydroxybutyrate-rich biomass, Bioresour. Technol., 99 (2008) 2680-2686. https://doi.org/10.1016/j.biortech.2007.03.065
[144] S. Luo, A.N. Netravali. Mechanical and thermal properties of environment- friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate-co-valerate) resin, Polym. Compos., 20 (1999) 367-378. https://doi.org/10.1002/pc.10363
[145] S. Singh, A.K. Mohanty. Wood fiber reinforced bacterial bioplastic composites: Fabrication and performance evaluation, Compos. Sci. Technol., 67 (2007) 1753-1763. https://doi.org/10.1016/j.compscitech.2006.11.009
[146] L. Averous, N. Boquillon. Biocomposites based on plasticized starch: thermal and mechanical behaviours, Carbohydr. Polym., 56 (2004) 111-122. https://doi.org/10.1016/j.carbpol.2003.11.015
[147] M. Morreale, R. Scaffaro, A. Maio, F.P. La Mantia. Effect of adding wood flour to the physical properties of a biodegradable polymer, Compos. A: Appl. Sci. Manuf., 39 (2008) 503-513. https://doi.org/10.1016/j.compositesa.2007.12.002
[148] N.M. Barkoula, S.K. Garkhail, T. Peijs. Biodegradable composites based on flax/polyhydroxybutyrate and its copolymer with hydroxyvalerate, Indus. Crops Prod., 31 (2010) 34-42. https://doi.org/10.1016/j.indcrop.2009.08.005
[149] A.K. Mohanty, A. Wibowo, L.T. Drzal. Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites, Compos. A: Appl. Sci. Manuf., 35 (2004) 363-370. https://doi.org/10.1016/j.compositesa.2003.09.015
[150] A. Aluigi, C. Vineis, A. Ceria, C. Tonin. Composite biomaterials from fibre wastes: Characterization of wool-cellulose acetate blends, Compos. A: Appl. Sci. Manuf., 39 (2008) 126-132. https://doi.org/10.1016/j.compositesa.2007.08.022
[151] M. Carus, C. Gahle. Injection moulding with natural fibres, Reinf. Plast., 52 (2008) 18-25. https://doi.org/10.1016/S0034-3617(08)70101-2
[152] European Commission, L269, Official Journal of European Commission, 21st October 2000 (Directive 2000/53/EC), Life Focus (2004).
[153] L.A. Duigou, P. Davies, C. Baley. Seawater ageing of flax/poly(lactic acid) biocomposites, Polym. Degrad. Stab., 94 (2009) 1151-1162. https://doi.org/10.1016/j.polymdegradstab.2009.03.025