The rise of solar cells

$15.95

The rise of solar cells

Sonal P. Ghawade, Abhay D. Deshmukh, Kavita Abhay Deshmukh, S. J. Dhoble

Solar power is a significant source of green and renewable type of energy. A photovoltaic cell is an electronic device which directly converts sunlight into electricity. Light falling on the solar cell generates both current and voltage to produce electric power. This process needs a material in which the absorption of light raises an electron to a higher energy state, and the movement of this higher energy electron from the solar cell into an external circuit gives rise to electric current. The electron further dissipates its energy in the external circuit and returns to the solar cell. In this chapter we will discuss the chronological history and scientific advancements in research and development activities related to solar cell technology since 1954 to present. We will also show various types of solar cells and their applications.

Keywords
Photovoltaic Cells, History of Solar Cells, Different Generation of Solar Cells, Types of Solar Cells

Published online 8/2/2017, 36 pages

DOI: http://dx.doi.org/10.21741/9781945291371-1

Part of Recent Advances in Photovoltaics

References
[1] Ciamician G (1912) Photochemistry of the Future, Science 36: 385-394. https://doi.org/10.1126/science.36.926.385
[2] W. P. Hirshman, “Surprise, surprise (cell production 2009: survey),” Photon International, pp. 176-199, 2010.
[3] A. Sharma, “PV demand database-quarterly,” IMS Research, 2011.
[4] Dave Clark, R. Patel, et al. “Laser may bring the solar cell market,” Photonic Spectra, June 2007, 54-58.
[5] J. J. Berger: The Business of Renewable energy and what it means of America (1998).
[6] C. C. Wang and K. J. Lin: Applied Mechanics and materials 130 (1989) 1286.
[7] A. Einstein: An Phys.17 (1905) 132 and Am. J. Phy. 33 (1965) 367 (in English).
[8] D. M. Chapin, C. S. Fuller and G.L. Pearson: Journal of Applied physics 25 (1954) 676. https://doi.org/10.1063/1.1721711
[9] A. W. Bett, S. P. Philipps , S. ESSig, S. Heckelmann, R. Kellenbenz, V. Klinger, M. Niemeyer, D. Lackner , F.Dimorth: 28 th European photovoltaic solar energy conference and exhibition, Paris, France pp. 1-6 (2013).
[10] Handbook of Photovoltaic Science and Engineering, Antonio Luque, Steven Hegedus, 2003 ISBN 0-471-49196-9).
[11] S. R. Wenham and M.A. Green: Prog. Photovolt: Res. Appl. 43 (1996).
[12] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Koll, C. Droz and J. Bailat: Prog. Photovolt: Res. Appl. 12 113 (2004). https://doi.org/10.1002/pip.533
[13] K. L. Chopra, P. D. Paulson and V. Dutta: Prog. Photovolt: Res. Appl 12 69 (2004). https://doi.org/10.1002/pip.541
[14] C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laired, S. Jia and S. P. Williams: Adv. mater. 22 3839 (2010). https://doi.org/10.1002/adma.200903697
[15] Website: http://www.nrel.gov
[16] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop: Prog. photovolt: Res. Appl. 21 (2013) 1. https://doi.org/10.1002/pip.2352
[17] Solar Cell Materials Developing Technologies ISBN: 9780470065518 Gavin Conibeer, Arthur Willoughby.
[18] Website: http://org.ntnu.no/solarcells/pages/generatins.php.
[19] K. D. G. ImalkaJayawardena, Lynn J. Rozanski, Chris A. Mills, Michail J. Beliatis, N. AaminaNismy and S. Ravi P. Silva, Nanoscale, 2013, 5, 8411.
[20] Photovoltaics Report, Fraunhofer ISE, July 28, 2014 (http://www.ise.fraunhofer. de/en/downloads­englisch/pdf­files­englisch/photovoltaics­report­slides.pdf), pages 24, 25.
[21] W. Heywang, K. H. Zaininger, Silicon: the semiconductor material (http://books.google.com/books?id=ATFo8Pr67uIC&pg=PA25&dq=%22silicon+era%2&hl=en&ei=tGdFTMrmK8Oblgfi763tAw&sa=X&oi), in Silicon: evolution and future of a technology, P. Siffert, E. F. Krimmel eds., Springer Verlag, 2004.
[22] “Solar Insight, Research note – PV production 2013: an allAsian¬affair” (PDF). Bloomber New Energy Finance. 16 April 2014. pp. 2-3. Archived from the original on 30 April 2015.
[23] “China: The new silicon valley – Polysilicon”. 2 February 2015. Archived from the original on 30 April 2015.
[24] Photovoltaics: Getting Cheaper (http://www.nyecospaces. com/2007/09/photovoltaics­getting­cheaper. html).
[25] The Wall Street Journal, A Shortage Hits Solar Power. April 29, 2006.(http://online. wsj. com/article/SB114624912379938991. html).
[26] http://www.enfsolar.com/directory/material/polysilicon.
[27] Basore, P. A. (2006), “CSG­2: Expanding the production of a new polycrystalline silicon PV technology” (PDF), Proceedings of the 21st European Photovoltaic Solar Energy Conference.
[28] V. Avrutin, N.Izyumskaya, and H. Morko, “Semiconductor solar cells: recent progress in terrestrial applications,” Superlattices and Microstructures, vol. 49, no. 4, pp. 337-364, 2011. https://doi.org/10.1016/j.spmi.2010.12.011
[29] S. M. Sze, “Physics of semiconductor devices (2nd edition), Wiley, Amsterdam (1981),” Microelectronics Journal, vol. 13, no. 4, p. 44, 1982.
[30] A. Bosio, N. Romeo, S. Mazzamuto, and V. Canevari, “Polycrystalline CdTe thin films for photovoltaic applications,” Progress in Crystal Growth and Characterization of Materials, vol. 52, no. 4, pp. 247-279, 2006. https://doi.org/10.1016/j.pcrysgrow.2006.09.001
[31] Mohammad Bagher, Mirzaei Mahmoud AbadiVahid, Mirhabibi Mohsen, Types of Solar Cells and Application, American Journal of Optics and Photonics. Vol. 3, No. 5, 2015, pp. 94-113. doi: 10.11648/j.ajop.20150305.17. https://doi.org/10.11648/j.ajop.20150305.17
[32] Fraunhofer ISE Photovoltaic Report (http://www. ise. fraunhofer. de/en/downloads­englisch/pdf­files­ englisch/photovoltaics­report­slides. pdf), July 28, 2014, pages 18, 19.
[33] Achievements and Challenges of CdS/CdTe Solar Cells Zhou Fang, Xiao Chen Wang, Hong Cai Wu, and Ce Zhou Zhao, Hindawi Publishing Corporation International Journal of Photoenergy, Volume 2011, Article ID 297350, 8pages. https://doi.org/10.1155/2011/297350
[34] Solar cell technology and their Applications. 2010 ISBN 978-1-4200-8177-0.
[35] Tinoco, T.; Rincón, C.; Quintero, M.; Pérez, G. Sánchez (1991). “Phase Diagram and Optical Energy Gaps for CuInyGa1−ySe2 Alloys” Physica Status Solidi (a) 124 (2): 427. Bibcode: 1991PSSAR. 124. 427T. doi: 10. 1002/pssa. 2211240206.
[36] Stanbery, B. J. (2002). “Copper Indium Selenides and RelatedMaterials for Photovoltaic Devices”. Critical Reviews in Solid State and Materials Science doi:10. 1080/20014091104215.
[37] Andorka, Frank (2014­01­08). “CIGS Solar Cells, Simplified”. http://www.solarpowerworldonline.Com. Solar Power World. Archived from the original on 16 August 2014. Retrieved 16 August 2014. External link in |website= (help).
[38] “CIS – Ecology”. Solar Frontier. Retrieved July 2015.
[39] Jasenek et al., 2001; La Roche et al., 2000.
[40] M.T.Winkler, W.Wang.O.Gunawan, H.J.Hovel, T.K.Todorv and D.B.Mitzi: Energy Environ. Sci. 7 (2014) 1029. https://doi.org/10.1039/C3EE42541J
[41] R. Nitsche, D. F. Sargent, and P. Wild: Journal of Crystal Growth 1/1 (1967) 52. https://doi.org/10.1016/0022-0248(67)90009-7
[42] K. Ito and T. Nakazawa: Japanese Journal of Applied Physics 27 (1988) 2094. https://doi.org/10.1143/JJAP.27.2094
[43] T. M. Friendlmeier, N. Wieser, T. Walter , H. Dittrich, and H. W. Schock: Proceeding of the 14th European photovoltaic solar energy coneference (1997).
[44] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki and A. Takeuchi: Thin Solid Films 517/7 (2009) 2455. https://doi.org/10.1016/j.tsf.2008.11.002
[45] P. K. Sarswat and M. L. Free: Physica Status Solidi A 208/12 (2011) 2861. https://doi.org/10.1002/pssa.201127216
[46] Tejas Prabhakar and J. Nagaraju: Solar Energy Materials and Solar cells 95/3 (2011) 1001. https://doi.org/10.1016/j.solmat.2010.12.012
[47] T. K. Todorov, K. B. Reuter and D. B. Mitzi: Advanced Materials 22/20 (2010) E 156.
[48] Website: http://ibmresearchnews.blogspot.in
[49] W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi: Advanced materials (2013) doi.10.1002/aenm.201301465. https://doi.org/10.1002/aenm.201301465
[50] Baskoutas, Sotirios; Terzis, Andreas F. (2006). “Sizedependent band gap of colloidal quantum dots”. Journal ofApplied Physics 99: 013708. Bibcode:2006JAP….99a3708B. doi:10.1063/1.2158502. https://doi.org/10.1063/1.2158502
[51] H. Sargent, E. (2005). “Infrared Quantum Dots” (PDF). Advanced Materials 17 (5): 515-522. doi:10.1002/adma.200401552. https://doi.org/10.1002/adma.200401552
[52] Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, Edward H. (2012). “Hybrid passivated colloidal quantum dot solids”. Nature Nanotechnology 7 (9): 577–582. 2012. https://doi.org/10.1038/nnano.2012.127
[53] Mitchell, Marit (2014-06-09). “New nanoparticles bring cheaper, lighter solar cells outdoors”. Rdmag.com. Retrieved 2014-08-24. https://doi.org/10.1039/C4TC00988F
[54] Carbon quantum dots: synthesis, properties and applications.Youfu Wang and Aiguo HuJ. Mater. Chem. C, 2014, 2, 6921.
[55] Meng-Lin Tsai,Wei-Chen Tu, Libin Tang, Tzu-Chiao Wei, Wan-Rou Wei, Shu Ping Lau,Lih-Juann Chen, and Jr-Hau He pubs.acs.org/NanoLett,DOI: 10.1021/acs.nanolett.5b03814. https://doi.org/10.1021/acs.nanolett.5b03814
[56] M. A. Greenwood, News Editor. “Solar Technology: Seeking its day in the sun,” Photonics Spectra, July 2007, 42-50.
[57] Askari Mohammad Bagher, Mirzaei Mahmoud AbadiVahid, Mirhabibi Mohsen. Types of Solar Cells and Application. American Journal of Optics and Photonics. Vol. 3, No. 5, 2015, pp. 94-113. https://doi.org/10.11648/j.ajop.20150305.17
[58] “Oerlikon Divests Its Solar Business and the Fate of Amorphous Silicon PV”. Grrentech Media. March 2, 2012.
[59] Brian O’ Regan, Michael Grätzel (24 October 1991). “A low¬cost, high¬ efficiency solar cell based on dye­sensitized colloidal TiO2 films”. Nature, 353, (6346): 737-740. https://doi.org/10.1038/353737a0
[60] “Dye-Sensitized vs. Thin Film Solar Cells”, European Institute for Energy Research, 30 June 2006.
[61] Tributsch, H (2004). “Dye sensitization solar cells: a critical assessment of the learning curve”. Coordination Chemistry Reviews 248 (13–14): 1511-1530Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, Dye sensitized solar cells with conversion efficiency of 11.1%, Jpn. J. Appl. Phys. Vol. 45, 638–640, (2006).
[62] The renaissance of dye­sensitized solar cells, Brian E. Hardin, Henry J. Snaith& Michael D. McGehee. Nature Photonics 6, 162-169 (2012). https://doi.org/10.1038/nphoton.2012.22
[63] Moss, S. J. and Ledwith, A. (1987). The Chemistry of the Semiconductor Industry. Springer. ISBN 0­216­92005­1.
[64] Solar Photovoltaics Fundamentals, Technologies and Applications chetan Singh Solanki 2013ISBN-978-203-4386-3.
[65] S. P. Tobin, S. M. Vernon, C. Bajgar, L. M. Geoffroy, C. J. Keavney, M. M. Sanfacon, and V. E. Haven. Device processing and analysis of high-efficiency GaAs Solar Cells. Solar Cells, 24(1-2):103-115, 1988. https://doi.org/10.1016/0379-6787(88)90040-3
[66] Collavini, S. , Völker, S. F. and Delgado, J. L. (2015). “Understanding the Outstanding Power Conversion Efficiency of Perovskite­Based Solar Cells”. Angewandte Chemie International Edition 54 (34): 9757-9759.doi:10. 1002/anie. 201505321.
[67] Kojima, Akihiro; Teshima, Kenjiro; Shirai, Yasuo; Miyasaka, Tsutomu (May 6, 2009). “Organometal Halide Perovskites as Visible­Light Sensitizers for Photovoltaic Cells”. Journal of the American Chemical Society 131(17): 6050–6051. doi:10. 1021/ja809598r. PMID 19366264.
[68] Eperon, Giles E.; Stranks, Samuel D.; Menelaou, Christopher; Johnston, Michael B.; Herz, Laura M.; Snaith, Henry J. (2014). “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells”. Energy & Environmental Science 7 (3): 982. doi:10. 1039/C3EE43822H.
[69] Noel, Nakita K.; Stranks, Samuel D.; Abate, Antonio; Wehrenfennig, Christian; Guarnera, Simone; Haghighirad, Amir­Abbas; Sadhanala, Aditya; Eperon, Giles E.; Pathak, Sandeep K.; Johnston, Michael B.; Petrozza, Annamaria; Herz, Laura M.; Snaith, Henry J. (May 1, 2014). “Lead­free organic-inorganic tin halide perovskites for photovoltaic applications”. Energy & Environmental Science 7 (9): 3061. doi:10. 1039/C4EE01076K.
[70] Wilcox, Kevin (May 13, 2014). “Solar Researchers Find Promise in Tin Perovskite Line”. Civil Engineering. Archived from the original on October 6, 2014.
[71] Meehan, Chris (May 5, 2014). “Getting the lead out of Perovskite Solar Cells”. Solar Reviews.
[72] “NREL efficiency chart”.
[73] Oxford Photovoltaics (June 10, 2013) Oxford PV reveals breakthrough in efficiency of new class of solar cell (http://www.oxfordpv.com/oxford­pv­news/oxford­pv­reveals­breakthrough­in­efficiency­of­new­class­of­solar­ cell/).
[74] Wang, Ucilia (September 28, 2014). “Perovskite Offers Shot at Cheaper Solar Energy”. The Wall Street Journal. Retrieved May 7, 2015. (regi st rat i on requi red)
[75] Is Perovskite the Future of Solar Cells? (http://www.engineering. com/Blogs/tabid/3207/ArticleID/6773/Is­Perovskite­the­Future­of­Solar­Cells.aspx). engineering.com. December 6, 2013.
[76] Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; MacUlan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M. (2015). “High­quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization”. Nature Communications 6: 7586. doi:10. 1038/ncomms8586. PMC 4544059. PMID 26145157.
[77] Snaith, Henry J. (2013). “Perovskites: The Emergence of a New Era for Low­Cost, High­Efficiency Solar Cells”. The Journal of Physical Chemistry Letters 4 (21): 3623-3630. doi:10. 1021/jz4020162.