Photo-Fenton oxidation technology for the treatment of wastewater

$15.95

Photo-Fenton oxidation technology for the treatment of wastewater

V. Muelas-Ramos, R. Muñoz-Mansilla, V. Calvino-Casilda, E. Muñoz-Camacho, R.M. Martín-Aranda, I.A. Santos-López

The main recent advances in photo-Fenton oxidation treatment for recalcitrant wastewaters have been reviewed. Biodegradable intermediates and mineralized pollutants are obtained from recalcitrant compounds when this oxidation technology is employed in wastewater. However, the cost of the technology is one of the main limitations. Several strategies, such as new nanotechnologies, heterogeneous catalysts or chelating agents have been used to reduce the cost and enhance the efficiency of the photo-Fenton process. Moreover, applying solar energy cost can be reduced integrating biological treatments in the oxidation process. Direct UV photolysis is able to degrade pollutants (chemicals, pharmaceuticals, agrochemicals, endocrine-disrupting compounds, and herbicides) in water. In this scenery, photo-Fenton is presented as an attractive and very effective alternative for the removal of recalcitrant compounds and emerging contaminants present in wastewater.

Keywords
Photo-Fenton Oxidation, Emerging Pollutants, Recalcitrant Compounds, Wastewater Treatment; Pollutant Degradation

Published online 8/1/2017, 50 pages

DOI: http://dx.doi.org/10.21741/9781945291357-12

Part of Inorganic Pollutants in Wastewater

References
[1] A.R. Ribeiro, O.C. Nunes, M.F.R Pereira, A.M.T. Silva, A.M.T, An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environment International, 75 (2015) 33-51. https://doi.org/10.1016/j.envint.2014.10.027
[2] L. Clarizia, D. Russo, I, Di Somma, R. Marotta, R. Andreozzi, Homogeneous photo-Fenton processes at near neutral pH: A review, Applied Catalysis B: Environmental, 209 (2017) 358-371. https://doi.org/10.1016/j.apcatb.2017.03.011
[3] N. Wang, Y. Du, W. Ma, P. Xu, X. Han, Rational design and synthesis of SnO2-encapsulated α-Fe2O3 nanocubes as a robust and stable photo-Fenton catalyst, Applied Catalysis B: Environmental, 210 (2017) 23-33. https://doi.org/10.1016/j.apcatb.2017.03.037
[4] J. Alexander, P. Karaolia, D. Fatta-Kassinos, T. Schwartz, Impacts of Advanced Oxidation Processes on Microbiomes during Wastewater Treatment, Handbook of Environmental Chemistry,45 (2016) 129-144.
[5] D. Panda, S. Manickam, Recent advancements in the sonophotocatalysis (SPC) and doped-sonophotocatalysis (DSPC) for the treatment of recalcitrant hazardous organic water pollutants, Ultrasonics Sonochemistry, 36 (2017) 481-496. https://doi.org/10.1016/j.ultsonch.2016.12.022
[6] L. Clarizia, D. Russo, I. Di Somma, R. Marotta, R. Andreozzi, Homogeneous photo-Fenton processes at near neutral pH: A review, Applied Catalysis B: Environmental, 209 (2017) 358-371. https://doi.org/10.1016/j.apcatb.2017.03.011
[7] H. Wang, Y. Xu, L. Jing, S. Huang, Y. Zhao, M. He, H. Xu, H. Li, Novel magnetic BaFe12O19/g-C3N4 composites with enhanced thermocatalytic and photo-Fenton activity under visible-light, Journal of Alloys and Compounds, 710 (2017) 510-518. https://doi.org/10.1016/j.jallcom.2017.03.144
[8] S. Garcia-Segura, J. Anotai, S. Singhadech, M. Lu, Enhancement of biodegradability of o-toluidine effluents by electro-assisted photo-Fenton treatment, Process Safety and Environmental Protection, 106 (2017) 60-67. https://doi.org/10.1016/j.psep.2016.12.011
[9] N. López, S. Plaza, A. Afkhami, P. Marco, J. Giménez, S. Esplugas, Treatment of Diphenhydramine with different AOPs including photo-Fenton at circumneutral pH, Chemical Engineering Journal, 318 (2017) 112-120. https://doi.org/10.1016/j.cej.2016.05.127
[10] N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, Journal of Environmental Chemical Engineering, 4 (1) (2016) 762-787. https://doi.org/10.1016/j.jece.2015.12.016
[11] S. Rahim Pouran, A.R. Abdul Aziz, W.M.A Wan Daud, W.M.A, Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters, Journal of Industrial and Engineering Chemistry, 21 (2015) 53-69. https://doi.org/10.1016/j.jiec.2014.05.005
[12] A. Cruz, A., L. Couto, S. Esplugas, C. Sans, Study of the contribution of homogeneous catalysis on heterogeneous Fe(III)/alginate mediated photo-Fenton process, Chemical Engineering Journal, 318 (2017) 272-280. https://doi.org/10.1016/j.cej.2016.09.014
[13] Z. Jia, J. Kang, W.C. Zhang, W.M. Wang, C. Yang, H. Sun, D. Habibi, L.C. Zhang, Surface aging behaviour of Fe-based amorphous alloys as catalysts during heterogeneous photo Fenton-like process for water treatment, Applied Catalysis B: Environmental, 204 (2017) 537-547. https://doi.org/10.1016/j.apcatb.2016.12.001
[14] A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes-A review, Chemosphere 174 (2017) 665-688. https://doi.org/10.1016/j.chemosphere.2017.02.019
[15] M. Yoon, Y. Oh, S. Hong, J.S. Lee, R. Boppella, S.H. Kim, F. Marques Mota, S.O. Kim, D.H. Kim, Synergistically enhanced photocatalytic activity of graphitic carbon nitride and WO3 nanohybrids mediated by photo-Fenton reaction and H2O2, Applied Catalysis B: Environmental, 206 (2017) 263-270. https://doi.org/10.1016/j.apcatb.2017.01.038
[16] Y. Liu, W. Jin, Y. Zhao, G. Zhang, W. Zhang, Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions, Applied Catalysis B: Environmental, 206 (2017) 642-652. https://doi.org/10.1016/j.apcatb.2017.01.075
[17] A. Dutta, S. Datta, M. Ghosh, D. Sarkar, S. Chakrabarti, Sunlight-assisted photo-fenton process for removal of insecticide from agricultural wastewater, Trends in Asian Water Environmental Science and Technology, (2016) 23-33.
[18] C. Trellu, E. Mousset, Y. Pechaud, D. Huguenot, E.D. van Hullebusch, G. Esposito, M.A. Oturan, Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review, Journal of Hazardous Materials, 306 (2016) 149-174. https://doi.org/10.1016/j.jhazmat.2015.12.008
[19] S. Giannakis, S. Liu, A. Carratalà, S. Rtimi, M. Bensimon, C. Pulgarin, Effect of Fe(II)/Fe(III) species, pH, irradiance and bacterial presence on viral inactivation in wastewater by the photo-Fenton process: Kinetic modeling and mechanistic interpretation, Applied Catalysis B: Environmental, 204 (2017) 156-166. https://doi.org/10.1016/j.apcatb.2016.11.034
[20] B. Khennaoui, M.A. Malouki, M.C. López, F. Zehani, N. Boutaoui, Z.R. Salah, A. Zertal, Heterogeneous photo-Fenton process for degradation of azo dye: Methyl orange using a local cheap material as a photocatalyst under solar light irradiation, Optik, 137 (2017) 6-16. https://doi.org/10.1016/j.ijleo.2017.02.081
[21] M.J. Lima, C.G. Silva, A.M.T. Silva, J.C.B. Lopes, M.M. Dias, J.L. Faria, Homogeneous and heterogeneous photo-Fenton degradation of antibiotics using an innovative static mixer photoreactor, Chemical Engineering Journal, 310(2017) 342-351. https://doi.org/10.1016/j.cej.2016.04.032
[22] M. Castro-Alférez, M.I. Polo-López, J. Marugán, P. Fernández-Ibá-ez, Mechanistic modeling of UV and mild-heat synergistic effect on solar water disinfection, Chemical Engineering Journal, 316 (2017) 111-120. https://doi.org/10.1016/j.cej.2017.01.026
[23] L. Santos-Juanes, F.S. García Einschlag, A.M. Amat, A. Arques, Combining ZVI reduction with photo-Fenton process for the removal of persistent pollutants, Chemical Engineering Journal, 310(2017) 484-490 https://doi.org/10.1016/j.cej.2016.04.114
[24] M. Minella, E. Sappa, K. Hanna, F. Barsotti, V. Maurino, C. Minero, D. Vione, Considerable Fenton and photo-Fenton reactivity of passivated zero-valent iron, RSC Advances, 6(89) (2016) 86752-86761. https://doi.org/10.1039/C6RA17515E
[25] A. D. Bokare, W. Choi, Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes, Journal of Hazardous Materials 275 (2014) 121-135. https://doi.org/10.1016/j.jhazmat.2014.04.054
[26] A. Babuponnusami, K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2 (2014) 557-572. https://doi.org/10.1016/j.jece.2013.10.011
[27] O. Tsydenova, V. Batoev, A. Batoeva, Solar-enhanced advanced oxidation processes for water treatment: Simultaneous removal of pathogens and chemical pollutants, International Journal of Environmental Research and Public Health, 12(8) (2015) 9542-9561. https://doi.org/10.3390/ijerph120809542
[28] S.O. Ganiyu, E.D. Van Hullebusch, M. Cretin, G. Esposito, M.A. Oturan, Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: A critical review, Separation and Purification Technology, 156 (2015) 891-914. https://doi.org/10.1016/j.seppur.2015.09.059
[29] Q. Liu, T. Chen, Y. Guo, Z. Zhang, X. Fang, Grafting Fe(III) species on carbon nanodots/Fe-doped g-C3N4 via interfacial charge transfer effect for highly improved photocatalytic performance, Applied Catalysis B: Environmental, 205 (2017) 173-181 https://doi.org/10.1016/j.apcatb.2016.12.028
[30] Z. Cao, J. Zhang, J. Zhou, X. Ruan, D. Chen, J. Liu, Q. Liu, G. Qian, Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye. Journal of Environmental Management, 193 (2017) 146-153. https://doi.org/10.1016/j.jenvman.2016.11.039
[31] Y. Jin, Y. Wang, Q. Huang, L. Zhu, Y. Cui, L. Cui, C. Lin, The experimental study of a hybrid solar photo-Fenton and photovoltaic system for water purification, Energy Conversion and Management, 135 (2017) 178-187. https://doi.org/10.1016/j.enconman.2016.12.073
[32] P. Abdi, A. Farzi, A. Karimi, Application of a hybrid enzymatic and photo-fenton process for investigation of azo dye decolorization on TiO2/metal-foam catalyst, Journal of the Taiwan Institute of Chemical Engineers, 71, (2017) 137-144. https://doi.org/10.1016/j.jtice.2016.11.022
[33] S. Chen, Y. Wu, G. Li, J. Wu, G. Meng, X. Guo, Z. Liu, A novel strategy for preparation of an effective and stable heterogeneous photo-Fenton catalyst for the degradation of dye, Applied Clay Science, 136 (2017) 103-111. https://doi.org/10.1016/j.clay.2016.11.016
[34] P.V.L. Reddy,K-H. Kim, A review of photochemical approaches for the treatment of a wide range of pesticide, Journal of Hazardous Materials, 285 (2015) 325-335. https://doi.org/10.1016/j.jhazmat.2014.11.036
[35] P. Villegas-Guzman, S. Giannakis, R.A.Torres-Palma, C. Pulgarin, Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids, Applied Catalysis B: Environmental, 205 (2017) 219-227. https://doi.org/10.1016/j.apcatb.2016.12.021
[36] S. Arzate, J.L. García Sánchez, P. Soriano-Molina, J.L. Casas López, M.C. Campos-Ma-as, A. Agüera, J.A. Sánchez Pérez, Effect of residence time on micropollutant removal in WWTP secondary effluents by continuous solar photo-Fenton process in raceway pond reactors, Chemical Engineering Journal, 316 (2017) 1114-1121. https://doi.org/10.1016/j.cej.2017.01.089
[37] D. Hermosilla, N. Merayo, A. Gascó, Á. Blanco, The application of advanced oxidation technologies to the treatment of effluents from the pulp and paper industry: a review, Environmental science and pollution research international, 22(1) (2015) 168-191. https://doi.org/10.1007/s11356-014-3516-1
[38] P. Verlicchi, M. Al Aukidy, E. Zambello, What have we learned from worldwide experiences on the management and treatment of hospital effluent? – An overview and a discussion on perspectives, Science of the Total Environment, 514 (2015) 467-491. https://doi.org/10.1016/j.scitotenv.2015.02.020
[39] A. Talib, T.O. Randhir, Managing emerging contaminants in watersheds: Need for comprehensive, systems-based strategies, Sustainability of Water Quality and Ecology, (2016). DOI:10.1016/j.swaqe.2016.05.002.
[40] M. Tokumura, A. Sugawara, M. Raknuzzaman, M. Habibullah-Al-Mamun, S. Masunaga, Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes, Chemosphere, 159 (2016) 317-325. https://doi.org/10.1016/j.chemosphere.2016.06.019
[41] O. Gimeno, J.F. García-Araya, F.J. Beltrán, F.J. Rivas, A. Espejo, Removal of emerging contaminants from a primary effluent of municipal wastewater by means of sequential biological degradation-solar photocatalytic oxidation processe, Chemical Engineering Journal, 290 (2016) 12-20. https://doi.org/10.1016/j.cej.2016.01.022
[42] A.J. Expósito, A. Durán, J.M. Monteagudo, A. Acevedo, Solar photo-degradation of a pharmaceutical wastewater effluent in a semi-industrial autonomous plant, Chemosphere, 150 (2016) 254-257. https://doi.org/10.1016/j.chemosphere.2016.02.044
[43] J.A.D.L Perini, B.C.E. Silva, A.L. Tonetti, R.F.P. Nogueira, Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent, Environmental Science and Pollution Research, 24(7) (2016) 6233-6240. https://doi.org/10.1007/s11356-016-7416-4
[44] A.S. Anjana Anand, S. Adish Kumar, J. Rajesh Banu, G. Ginni, The performance of fluidized bed solar photo Fenton oxidation in the removal of COD from hospital wastewaters, Desalination and Water Treatment, 57 (18) (2016) 8236-8242. https://doi.org/10.1080/19443994.2015.1021843
[45] E.A. Serna-Galvis, A.L. Giraldo-Aguirre, J. Silva-Agredo, O.A. Flórez-Acosta, R.A. Torres-Palma, Removal of antibiotic cloxacillin by means of electrochemical oxidation, TiO2 photocatalysis, and photo-Fenton processes: analysis of degradation pathways and effect of the water matrix on the elimination of antimicrobial activity, Environmental Science and Pollution Research, 24(7) (2016) 6339-6352. https://doi.org/10.1007/s11356-016-6257-5
[46] G. Shankaraiah, S. Poodari, D. Bhagawan, V. Himabindu, S. Vidyavathi, Degradation of antibiotic norfloxacin in aqueous solution using advanced oxidation processes (AOPs)—A comparative study, Desalination and Water Treatment, 57(57) (2016) 27804-27815. https://doi.org/10.1080/19443994.2016.1176960
[47] A.O. Ifelebuegu, J. Ukpebor, B. Nzeribe-Nwedo, Mechanistic evaluation and reaction pathway of UV photo-assisted Fenton-like degradation of progesterone in water and wastewater, International Journal of Environmental Science and Technology, 13(12) (2016) 2757-2766. https://doi.org/10.1007/s13762-016-1103-3
[48] J. Xu, L. Li, B. Yuan, C. Shen, M. Fu, H. Cui, W. Sun, Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium, Chemical Engineering Journal, 291 (2016) 174-183. https://doi.org/10.1016/j.cej.2016.01.059
[49] N. Villota, J.M. Lomas, L.M. Camarero, Study of the paracetamol degradation pathway that generates color and turbidity in oxidized wastewaters by photo-Fenton technology, Journal of Photochemistry and Photobiology A: Chemistry, 329 (2016) 113-119. https://doi.org/10.1016/j.jphotochem.2016.06.024
[50] E. Costa, B. Silva, J.A. de Lima Perini, R.F.P. Nogueira, Influence of dihydroxybenzenes on paracetamol and ciprofloxacin degradation and iron(III) reduction in Fenton processes, Environmental Science and Pollution Research, 24(7) (2016) 6157-6164. https://doi.org/10.1007/s11356-016-6402-1
[51] S. Chakma, V.S. Moholkar, Investigations in sono-enzymatic degradation of ibuprofen, Ultrasonics Sonochemistry, 29 (2016) 485-494. https://doi.org/10.1016/j.ultsonch.2015.11.002
[52] R. Colombo, T.C.R. Ferreira, R.A. Ferreira, M.R.V. Lanza, Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis, Journal of Environmental Management, 167 (2016) 206-213. https://doi.org/10.1016/j.jenvman.2015.11.029
[53] P. Iovino, S. Chianee, S. Canzano, M. Prisciandaro, D. Musmarra, Degradation of Ibuprofen in Aqueous Solution with UV Light: the Effect of Reactor Volume and pH, Water Air Soil Pollut, 227 (2016) 194-201. https://doi.org/10.1007/s11270-016-2890-3
[54] E.A. Serna-Galvis, J. Silva-Agredo, A.L. Giraldo, O.A. Flórez, R.A. Torres-Palma, Comparison of route, mechanism and extent of treatment for the degradation of a β-lactam antibiotic by TiO2 photocatalysis, sonochemistry, electrochemistry and the photo-Fenton system, Chemical Engineering Journal, 284 (2016) 953-962. https://doi.org/10.1016/j.cej.2015.08.154
[55] H.B. Ammar, M.B. Brahim, R. Abdelhédi, Y. Samet, Enhanced degradation of metronidazole by sunlight via photo-Fenton process under gradual addition of hydrogen peroxide, Journal of Molecular Catalysis A: Chemical, 420 (2016) 222-227. https://doi.org/10.1016/j.molcata.2016.04.029
[56] K.A. Novoa-Luna, A. Mendoza-Zepeda, R. Natividad, R. Romero, M. Galar-Martínez, L.M. Gómez-Oliván, Biological hazard evaluation of a pharmaceutical effluent before and after a photo-Fenton treatment, Science of the Total Environment, 569 (2016) 830-840. https://doi.org/10.1016/j.scitotenv.2016.06.086
[57] E.M. Cuerda-Correa, J.R. Domínguez, M.J. Mu-oz-Pe-a, T. González, Degradation of Parabens in Different Aqueous Matrices by Several O3-Derived Advanced Oxidation Processes, Industrial and Engineering Chemistry Research, 55(18) (2016) 5161-5172. https://doi.org/10.1021/acs.iecr.6b00740
[58] H. Zú-iga-Benítez, G.A. Pe-uela, Degradation of ethylparaben under simulated sunlight using photo-Fenton, Water Science and Technology,73(4) (2016) 818-826.
[59] H. Zú-iga-Benítez, C. Aristizábal-Ciro, G.A. Pe-uela, Photodegradation of the endocrine-disrupting chemicals benzophenone-and methylparaben using Fenton reagent: Optimization of factors and mineralization/biodegradability studies, Journal of the Taiwan Institute of Chemical Engineers, 59 (2016) 380-388. https://doi.org/10.1016/j.jtice.2015.09.004
[60] G. Zhang, Q. Wang, W. Zhang, T. Li, Y. Yuan, P. Wang, Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH), Photochemical and Photobiological Sciences,15(8), (2016) 1046-1053. https://doi.org/10.1039/C6PP00051G
[61] V. Romero, O. González, B. Bayarri, P. Marco, J. Giménez, S. Esplugas, Degradation of Metoprolol by photo-Fenton: Comparison of different photoreactors performance, Chemical Engineering Journal, 283 (2016) 639-648. https://doi.org/10.1016/j.cej.2015.07.091
[62] V. Romero, S. Acevedo, P. Marco, J. Giménez, S. Esplugas Enhancement of Fenton and photo-Fenton processes at initial circumneutral pH for the degradation of the β-blocker metoprolol, Water Research, 88 (2016) 449-457. https://doi.org/10.1016/j.watres.2015.10.035
[63] E. Bocos, N. Oturan, M. Pazos, M.Ã Sanroman, M.A. Oturan, Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process, Environmental Science and Pollution Research, 23(19) (2016) 19134-19144. https://doi.org/10.1007/s11356-016-7054-x
[64] A. Bianco Prevot, F. Baino, D. Fabbri, F. Franzoso, G. Magnacca, R. Nisticò, A. Arques, A. Urban biowaste-derived sensitizing materials for caffeine photodegradation, Environmental Science and Pollution Research, 24(14) (2017) 12599-12607. https://doi.org/10.1007/s11356-016-7763-1
[65] E. López-Loveira, F. Ariganello, M.S. Medina, D. Centrón, R. Candal, G. Curutchet, Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes Environmental Science and Pollution Research, (2016) 1-11. https://doi.org/10.1007/s11356-016-7602-4
[66] Z-T. Hu, Z. Chen, R. Goei, W. Wu, T-T. Lim, Magnetically recyclable Bi/Fe-based hierarchical nanostructures: Via self-assembly for environmental decontamination, Nanoscale, 8(25) (2016) 12736-12746. https://doi.org/10.1039/C6NR03677E
[67] A.J. Expósito, J.M. Monteagudo, A. Durán, A. Fernández, Dynamic behavior of hydroxyl radical in sono-photo-Fenton mineralization of synthetic municipal wastewater effluent containing antipyrine, Ultrasonics Sonochemistry, 35 (2017) 185-195. https://doi.org/10.1016/j.ultsonch.2016.09.017
[68] H.M. Gutiérrez-Zapata, K.L. Rojas, J. Sanabria, J.A. Rengifo-Herrera, 2,4-D abatement from groundwater samples by photo-Fenton processes at circumneutral pH using naturally iron present. Effect of inorganicions, Environmental Science and Pollution Research, (2017) 1-10.
[69] L.O. Conte, A.V. Schenone, O.M. Alfano, Photo-Fenton degradation of the herbicide 2,4-in aqueous medium at pH conditions close to neutrality, Journal of Environmental Management, 170 (2016) 60-69. https://doi.org/10.1016/j.jenvman.2016.01.002
[70] S. Brosillon, C. Bancon-Montigny, J. Mendret, Photo-oxidation of tributyltin, dibutyltin and monobutyltin in water and marine sediments, International Journal of Chemical Reactor Engineering, 14(3) (2016) 719-726. https://doi.org/10.1515/ijcre-2014-0127
[71] P.A. Fasnabi, G. Madhu, P.A. Soloman, Removal of Acetamiprid from Wastewater by Fenton and Photo-Fenton Processes – Optimization by Response Surface Methodology and Kinetics, Clean – Soil, Air, Water, 44(6) (2016) 728-737. https://doi.org/10.1002/clen.201400131
[72] B.M. da Costa Filho, V.M. da Silva, J.O. Silva, A.E. da Hora Machado, A.G. Trovó, Coupling coagulation, flocculation and decantation with photo-Fenton process for treatment of industrial wastewater containing fipronil: Biodegradability and toxicity assessment, Journal of Environmental Management, 174 (2016) 71-78. https://doi.org/10.1016/j.jenvman.2016.03.019
[73] F. Gozzi, S.C. Oliveira, R.F. Dantas, V.O. Silva, F.H. Quina, A.Jr. Machulek, Kinetic studies of the reaction between pesticides and hydroxyl radical generated by laser flash photolysis, Journal of the Science of Food and Agriculture, 96(5) (2016) 1580-1584. https://doi.org/10.1002/jsfa.7258
[74] S. García-Ballesteros, M. Mora, R. Vicente, C. Sabater, M.A. Castillo, A. Arques, A.M. Amat, Gaining further insight into photo-Fenton treatment of phenolic compounds commonly found in food processing industry, Chemical Engineering Journal, 288 (2016) 126-136. https://doi.org/10.1016/j.cej.2015.11.031
[75] A.M.S. Polo, J.J. López-Pe-alver, M. Sánchez-Polo, J. Rivera-Utrilla, I. Velo-Gala, J.J. Salazar-Rábago, Oxidation of diatrizoate in aqueous phase by advanced oxidation processes based on solar radiation, Journal of Photochemistry and Photobiology A: Chemistry, 319-320 (2016) 87-95. https://doi.org/10.1016/j.jphotochem.2015.12.009
[76] T.B. Benzaquén, M.A. Isla, O.M. Alfano, Combined chemical oxidation and biological processes for herbicide degradation, Journal of Chemical Technology and Biotechnology, 91(3) (2016) 718-725. https://doi.org/10.1002/jctb.4635
[77] S. Martinez, M. Delgado, P. Jarvis, Removal of herbicide mecoprop from surface water using advanced oxidation processes (AOPS) (2016).
[78] N.T. Kim Phuong, M.W. Beak, B.T. Huy, Y.-I. Lee, Adsorption and photodegradation kinetics of herbicide 2,4,5-trichlorophenoxyacetic acid with MgFeTi layered double hydroxides, Chemosphere, 146 (2016) 51-59. https://doi.org/10.1016/j.chemosphere.2015.12.008
[79] H. Mechakra, T. Sehili, M.A. Kribeche, A.A. Ayachi, S. Rossignol, C. George, Use of natural iron oxide as heterogeneous catalyst in photo-Fenton-like oxidation of chlorophenylurea herbicide in aqueous solution: Reaction monitoring and degradation pathways, Journal of Photochemistry and Photobiology A: Chemistry, 317 (2016) 140-150. https://doi.org/10.1016/j.jphotochem.2015.11.019
[80] C.H. Wu, J.T. Wu, Y.H. Lin, Mineralization of sulfamethizole in photo-Fenton and photo-Fenton-like systems, Water Science and Technology, 73(4) (2016) 746-750.
[81] A.-O. Roongkarn, P. Aphaiphak, J. Ananpattarachai, P. Kajitvichyanukul, Y.-T. Hung, Heterogeneous Fenton and photo-Fenton reactions in paraquat removal using iron nanoparticles, International Journal of Environment and Waste Management, 18(1) (2016) 1-12. https://doi.org/10.1504/IJEWM.2016.080255
[82] S. Giannakis, M. I. Polo López, D. Spuhler, J. A. Sánchez Pérez, P. Fernández Ibá-ez, C. Pulgarin, Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process, Applied Catalysis B: Environmental 199 (2016) 199-223. https://doi.org/10.1016/j.apcatb.2016.06.009
[83] S. Giannakisa, M. I. Polo López, D. Spuhler, J. A. Sánchez Pérez, P. Fernández Ibá-ez, C. Pulgarin, Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection, Applied Catalysis B: Environmental 198 (2016) 431-446. https://doi.org/10.1016/j.apcatb.2016.06.007
[84] C. Ruales-Lonfat, .J.F. Barona, A. Sienkiewicz, J. Vélez, L.N. Benítez, C. Pulgarín, Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH, Applied Catalysis B: Environmental, 180 (2016) 379-390. https://doi.org/10.1016/j.apcatb.2015.06.030
[85] G. Ferro, A. Fiorentino, M.C. Alferez, M.I. Polo-López, L. Rizzo, P. Fernández-Ibá-ez, Urban wastewater disinfection for agricultural reuse: Effect of solar driven AOPs in the inactivation of a multidrug resistant E. coli strain, Applied Catalysis B: Environmental, 178 (2014), DOI: 10.1016/j.apcatb.2014.10.043. https://doi.org/10.1016/j.apcatb.2014.10.043
[86] P. Valero, S. Giannakis, R. Mosteo, M.P. Ormad, C. Pulgarin, Comparative effect of growth media on the monitoring of E. coli inactivation and regrowth after solar and photo-Fenton treatment, Chemical Engineering Journal, 313 (2017) 109-120. https://doi.org/10.1016/j.cej.2016.11.126
[87] T.F.C.V. Silva, E. Vieira, A.R. Lopes, O.C. Nunes, A. Fonseca, I. Saraiva, R.A.R. Boaventura, V.J.P. Vilar, How the performance of a biological pre-oxidation step can affect a downstream photo-Fenton process on the remediation of mature landfill leachates: Assessment of kinetic parameters and characterization of the bacterial communities Separation and Purification Technology, 175 (2017) 274-286. https://doi.org/10.1016/j.seppur.2016.11.011
[88] L.L.D.C. Huesca-Espitia, V. Aurioles-López, I. Ramírez, J.L. Sánchez-Salas, E.R. Bandala, Photocatalytic inactivation of highly resistant microorganisms in water: A kinetic approach, Journal of Photochemistry and Photobiology A: Chemistry, 337 (2017) 132-139. https://doi.org/10.1016/j.jphotochem.2017.01.025
[89] E. Ortega-Gómez, M.M.B. Martín, B.E. García, J.A.S Pérez, P.F. Ibá-ez, Wastewater disinfection by neutral pH photo-Fenton: The role of solar radiation intensity, Applied Catalysis B: Environmental, 181 (2016) 1-6. https://doi.org/10.1016/j.apcatb.2015.06.059
[90] S. Giannakis, C. Ruales-Lonfat, S. Rtimi, S. Thabet, P. Cotton, C. Pulgarin, Castles fall from inside: Evidence for dominant internal photo-catalytic mechanisms during treatment of Saccharomyces cerevisiae by photo-Fenton at near-neutral pH, Applied Catalysis B: Environmental, 185 (2016) 150-162. https://doi.org/10.1016/j.apcatb.2015.12.016
[91] S. Wang, Q. Li, F. Chen, J. Ke, R. Chen, HEPES-mediated controllable synthesis of hierarchical CuO nanostructures and their analogous photo-Fenton and antibacterial performance, Advanced Powder Technology, (2017), DOI:10.1016/j.apt.2017.03.001. https://doi.org/10.1016/j.apt.2017.03.001
[92] J.-A. Park, H.-L. Nam, J.-W. Choi, J. Ha, S.-H. Lee, Oxidation of geosmin and 2-methylisoborneol by the photo-Fenton process: Kinetics, degradation intermediates, and the removal of microcystin-LR and trihalomethane from Nak-Dong River water, South Korea, Chemical Engineering Journal, 313 (2017) 345-354. DOI: 10.1016/j.cej.2016.12.086. https://doi.org/10.1016/j.cej.2016.12.086
[93] V.J. Vilar, C.C.Amorim, E.Brillas, G. Li Puma, S. Malato, D.D. Dionysiou, AOPs: recent advances to overcome barriers in the treatment of water, wastewater and air, Environ Sci Pollut Res 24 (2017) 5987-5990. https://doi.org/10.1007/s11356-017-8425-7
[94] L. Yu, J. Chen, Z. Liang, W. Xu, L. Chen, D. Ye, Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst, Separation and Purification Technology, 171 (2016) 80-87. https://doi.org/10.1016/j.seppur.2016.07.020
[95] K. Li, Y. Zhao, M.J. Janik, C. Song, X. Guo, Facile preparation of magnetic mesoporous Fe3O4/C/Cu composites as high performance Fenton-like catalysts, Applied Surface Science, 396 (2017) 1383-1392. https://doi.org/10.1016/j.apsusc.2016.11.170
[96] T. Soltani, B.-K. Lee, Improving heterogeneous photo-Fenton catalytic degradation of toluene under visible light irradiation through Ba-doping in BiFeO3 nanoparticles, Journal of Molecular Catalysis A: Chemical, 425 (2016) 199-207. https://doi.org/10.1016/j.molcata.2016.10.009
[97] T. Soltani, B.-K. Lee, Novel and facile synthesis of Ba-doped BiFeO3 nanoparticles and enhancement of their magnetic and photocatalytic activities for complete degradation of benzene in aqueous solution, Journal of Hazardous Materials, 316 (2016) 122-133. https://doi.org/10.1016/j.jhazmat.2016.03.052
[98] P. Tepmatee, P. Siriphannon, Nanoporous copper doped aluminium pillared montmorillonite for dye-containing wastewater treatment, Water Environment Research, 88(11) (2016) 2015-2022. https://doi.org/10.2175/106143015X14362865227076
[99] X. Tang, Y. Liu, Heterogeneous photo-Fenton degradation of methylene blue under visible irradiation by iron tetrasulphophthalocyanine immobilized layered double hydroxide at circumneutral pH, Dyes and Pigments, 134 (2016) 397-408. https://doi.org/10.1016/j.dyepig.2016.07.026
[100] P.A. Soares, R. Souza, J. Soler, T.F.C.V. Silva, S.M.A.G.U. Souza, R.A.R. Boaventura, V.J.P.Vilar, Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes, Separation and Purification Technology, 172 (2017) 450-462. https://doi.org/10.1016/j.seppur.2016.08.036
[101] C. Jaramillo-Páez, J.A. Navío, M.C. Hidalgo, A. Bouziani, M.E. Azzouzi, Mixed α-Fe2O3/Bi2WO6 oxides for photoassisted hetero-Fenton degradation of Methyl Orange and Phenol, Journal of Photochemistry and Photobiology A: Chemistry, 332 (2017) 21-533. https://doi.org/10.1016/j.jphotochem.2016.09.031
[102] L. Ren, S.Y. Lu, J.Z. Fang, Y. Wu, D.Z. Chen, L.Y. Huang, Y.F. Chen, C. Cheng, Y. Liang, Z.Q. Fang, Enhanced degradation of organic pollutants using Bi25FeO40 microcrystals as an efficient reusable heterogeneous photo-Fenton like catalyst, Catalysis Today, 281 (2017) 656-661. https://doi.org/10.1016/j.cattod.2016.06.028
[103] Y. Ju, Y. Yu, X. Wang, M. Xiang, L. Li, D. Deng, D.D. Dionysiou, Environmental application of millimetre-scale sponge iron (s-Fe0) particles (IV): New insights into visible light photo-Fenton-like process with optimum dosage of H2O2 and RhB photosensitizers, Journal of Hazardous Materials, 323 (2017) 611-620. https://doi.org/10.1016/j.jhazmat.2016.09.064
[104] L. Zhang, Q. Zhai, X. Zhao, X. Min, Q. Zhu, J. Li, Modified wool-iron biopolymer-based complex as an active heterogeneous decontamination photocatalyst, Journal of Energy Chemistry, 25(6) (2016) 1064-1069. https://doi.org/10.1016/j.jechem.2016.10.010
[105] M. Ahmadi, B. Kakavandi, S. Jorfi, M. Azizi, Oxidative degradation of aniline and benzotriazole over PAC@FeIIFe2 IIIO4: A recyclable catalyst in a heterogeneous photo-Fenton-like system, Journal of Photochemistry and Photobiology A: Chemistry, 336 (2017) 42-53. https://doi.org/10.1016/j.jphotochem.2016.12.014
[106] K. Zhang, Y. Liu, Deng, S. Xie, H. Lin, X. Zhao, J. Yang, Z. Han, H. Dai, Fe2O3/3DOM BiVO4: High-performance photocatalysts for the visible light-driven degradation of 4-nitrophenol, Applied Catalysis B: Environmental, 202 (2017)569-579. https://doi.org/10.1016/j.apcatb.2016.09.069
[107] S. Papoutsakis, C. Pulgarin, I. Oller, R. Sánchez-Moreno, S. Malato, Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products: The possibilities of cork boiling wastewater reuse, Chemical Engineering Journal, 304 (2016) 890-896. https://doi.org/10.1016/j.cej.2016.07.021
[108] S. Miralles-Cuevas, I. Oller, A.Agüera, J.A.Sanchez Pérez and S.Malato, Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment, Chemical Engineering Journal 318 (2017) 161-170. https://doi.org/10.1016/j.cej.2016.06.031
[109] M. Ebrahimi, H. Kazemi, S.A. Mirbagheri, T.D. Rockaway, An optimized biological approach for treatment of petroleum refinery wastewater, Journal of Environmental Chemical Engineering, 4(3) (2016) 3401-3408. https://doi.org/10.1016/j.jece.2016.06.030
[110] Z. Ghasemi, H. Younesi, A.A. Zinatizadeh, Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology, Chemosphere, 159 (2016) 552-564. https://doi.org/10.1016/j.chemosphere.2016.06.058
[111] M. Bagheri-Esfe, H. Bagheri-Esfe, Petroleum refinery wastewater treatment in two-chamber microbial fuel cells (MFCs), Scientia Iranica, 23(6) (2016) 2791-2799.
[112] D.A. Aljuboury, P. Palaniandy, H.B.A. Aziz, S. Feroz, Evaluation of the solar photo-Fenton process to treat the petroleum wastewater by response surface methodology (RSM), Environmental Earth Sciences, 75(4) (2016) 333:1-12.
[113] D.A.D.A. Aljuboury, P. Palaniandy, H.B.A. Aziz, S. Feroz, S.S.A Amr, Evaluating photo-degradation of COD and TOC in petroleum refinery wastewater by using TiO2/ZnO photo-catalyst, Water Science and Technology, 74(6) (2016) 1312-1325. https://doi.org/10.2166/wst.2016.293
[114] E.B. Estrada-Arriaga, J.A. Zepeda-Aviles, L. García-Sánchez, Post-treatment of real oil refinery effluent with high concentrations of phenols using photo-ferrioxalate and Fenton’s reactions with membrane process step, Chemical Engineering Journal, 285 (2016) 508-516. https://doi.org/10.1016/j.cej.2015.10.030
[115] B.H. Diya’uddeen, S. Rahim Pouran, A.R. Abdul Aziz, W.M.A.W. Daud, Fenton oxidative treatment of petroleum refinery wastewater: process optimization and sludge characterization. RSC Advances, 5(83) (2015) 68159-68168. https://doi.org/10.1039/C5RA08079G
[116] G.F. Torres, J.A. Ortega Mãndez, D.L. Tinoco, E.D. Marin, J. Aranda, J.A. Herrera-Melián, J.M. Do-a RodrÃigez, J. Pérez Pe-a, Detoxification of synthetic and real groundwater contaminated with gasoline and diesel using Fenton, photo-Fenton, and biofilters, Desalination and Water Treatment, 57(50) (2016) 23760-23769. https://doi.org/10.1080/19443994.2016.1141710
[117] Z. Hussain, S.A. Mohammed, H. Ibraheem, N. Khan, B.M. Abdullah, E. Yousif, Photo-Fenton reaction: How to remediation waste-water using (Fe+2/UV), Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(4) (2016) 1072-1078.
[118] A. Moslehyani, A.F. Ismail, M.H.D. Othman, T. Matsuura, Design and performance study of hybrid photocatalytic reactor-PVDF/MWCNT nanocomposite membrane system for treatment of petroleum refinery wastewater, Desalination, 363 (2015) 99-111. https://doi.org/10.1016/j.desal.2015.01.044
[119] B.H. Diya’uddeen, S. Rahim Pouran, A.R. Abdul Aziz, S.M. Nashwan, W.M.A. Wan Daud, M.G. Shaaban, Hybrid of Fenton and sequencing batch reactor for petroleum refinery wastewater treatment, Journal of Industrial and Engineering Chemistry, 25 (2015) 186-191. https://doi.org/10.1016/j.jiec.2014.10.033
[120] C. Amor, De Torres-Socías, J. A. Peres. M. Maldonado, I. Oller, S. Malato, M. S.Lucas, Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes, Journal of Hazardous Materials, 286 (2015) 261-268. https://doi.org/10.1016/j.jhazmat.2014.12.036
[121] T.F.C.V. Silva, A. Fonseca, I. Saraiva, R.A.R. Boaventura, V.J.P. Vilar, Scale-up and cost analysis of a photo-Fenton system for sanitary landfill leachate treatment, Chemical Engineering Journal, 283 (2016) 76-88. https://doi.org/10.1016/j.cej.2015.07.063
[122] F.G. Zha, D.X. Yao, Y.B. Hu, L.M. Gao, X.M. Wang, Integration of US/Fe2+ and photo-Fenton in sequencing for degradation of landfill leachate, Water Science and Technology, 73(2) (2016) 260-266. https://doi.org/10.2166/wst.2015.487
[123] J.O. Silva, V.M. Silva, V.L. Cardoso, A.E.H. Machado, A.G. Trovó, Treatment of sanitary landfill leachate by photo-Fenton process: Effect of the matrix composition, Journal of the Brazilian Chemical Society, 27(12) (2016) 2264-2272. https://doi.org/10.5935/0103-5053.20160120
[124] T.F.C.V. Silva, P.A. Soares, D.R. Manenti, A. Fonseca, I. Saraiva,R.A.R. Boaventura, V.J.P. Vilar, V.J.P, An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale, Science of the Total Environment, 576 (2017) 99-117. https://doi.org/10.1016/j.scitotenv.2016.10.058
[125] F. Mahdad, H. Younesi, N. Bahramifar, M. Hadavifar, Optimization of Fenton and photo-Fenton-based advanced oxidation processes for post-treatment of composting leachate of municipal solid waste by an activated sludge process, KSCE Journal of Civil Engineering,20(6) (2016) 2177-2188. https://doi.org/10.1007/s12205-015-1045-1
[126] P. Villegas-Guzman, Jj. Silva-Agredo, O. Florez, A.L. Giraldo-Aguirre, C. Pulgarin, R.A. Torres-Palma, Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration, Journal of Environmental Management, 190 (2017) 72-79. https://doi.org/10.1016/j.jenvman.2016.12.056
[127] F.F. Karam, F.H. Hussein, S.J. Baqir, A.F. Alkaim, Optimal conditions for treatment of contaminated waters with anthracene by Fenton processes in close system reactor, Journal of Chemical and Pharmaceutical Sciences, 9(3) (2016) 1111-1115.
[128] P. Grant-Preece,L.M. Schmidtke,C. Barril, A.C. Clark, Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature, Food Chemistry, 215 (2017) 292-300. https://doi.org/10.1016/j.foodchem.2016.07.131
[129] G. Pliego, J.A. Zazo, P. Garcia-Mu-oz, M. Munoz, J.A. Casas, J.J. Rodriguez, Trends in the Intensification of the Fenton Process for Wastewater Treatment: An Overview, Critical Reviews in Environmental Science and Technology, 45(24) (2015) 2611-2692. https://doi.org/10.1080/10643389.2015.1025646
[130] R. Sharma, Komal, V. Kumar, S. Bansal, S. Singhal, Boosting the catalytic performance of pristine CoFe2O4 with yttrium (Y3+) inclusion in the spinel structure Materials Research Bulletin, 90 (2017) 94-103. https://doi.org/10.1016/j.materresbull.2017.01.049
[131] A.L. Giraldo-Aguirre, E.A. Serna-Galvis, E.D. Erazo-Erazo, J. Silva-Agredo, H. Giraldo-Ospina, O.A. Flórez-Acosta, R.A. Torres-Palma, Removal of β-lactam antibiotics from pharmaceutical wastewaters using photo-Fenton process at near-neutral pH, Environmental Science and Pollution Research, (2017) 1-11. DOI:10.1007/s11356-017-8420-z https://doi.org/10.1007/s11356-017-8420-z
[133] X. Wei, H. Wu, G. He, Y. Guan, Y, Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: Importance of visible light irradiation and intermediates, Journal of Hazardous Materials, 321(2017) 408-416. https://doi.org/10.1016/j.jhazmat.2016.09.031
[134] D.H. Funai, F. Didier, J. Giménez, S. Esplugas, P. Marco, A. Machulek, Junior, Photo-Fenton treatment of valproate under UVC, UVA and simulated solar radiation, Journal of Hazardous Materials, 323 (2017) 537-549. https://doi.org/10.1016/j.jhazmat.2016.06.034
[135] F.F. Karam, F.H. Hussein, S.J. Baqir, A.F. Alkaim, Optimal conditions for treatment of contaminated waters with anthracene by Fenton processes in close system reactor, Journal of Chemical and Pharmaceutical Sciences, 9(3) (2016) 1111-1115.
[136] I. de la Obra, L. Ponce-Robles, S. Miralles-Cuevas, I. Oller, S. Malato, J.A. Sánchez Pérez, Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors, Catalysis Today, 287 (2017) 10-14. https://doi.org/10.1016/j.cattod.2016.12.028
[137] Y. Wang, J. Fang, J.C. Crittenden, C. Shen, Novel RGO/α-FeOOH supported catalyst for Fenton oxidation of phenol at a wide pH range using solar-light-driven irradiation, Journal of Hazardous Materials, 329 (2017) 321-329. https://doi.org/10.1016/j.jhazmat.2017.01.041
[138] F. Franzoso, R. Nisticò, F. Cesano, I. Corazzari, F. Turci, D. Scarano, A. Bianco Prevot, G. Magnacca, L. Carlos, D.O. Mártire, Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments, Chemical Engineering Journal, 310 (2017) 307-316. https://doi.org/10.1016/j.cej.2016.10.120
[139] F.F. Dias, A.A.S. Oliveira, A.P. Arcanjo, F.C.C. Moura, J.G.A. Pacheco, Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton, Applied Catalysis B: Environmental, 186 (2016) 136-142. https://doi.org/10.1016/j.apcatb.2015.12.049
[140] S. Xavier, R. Gandhimathi, P.V. Nidheesh, S.T. Ramesh, Comparative removal of Magenta MB from aqueous solution by homogeneous and heterogeneous photo-Fenton processes. Desalination and Water Treatment, 57(27), (2016) 12832-12841. https://doi.org/10.1080/19443994.2015.1054887
[141] S. Miralles-Cuevas, I. Oller, A. Agüera, J.A. Sánchez Pérez, S. Malato, Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment, Chemical Engineering Journal, 318 (2017) 161-170. https://doi.org/10.1016/j.cej.2016.06.031
[142] I. de La Obra, B. Esteban García, J.L. García Sánchez, J.L. Casas López, J.A, Sánchez Pérez, Low cost UVA-LED as a radiation source for the photo-Fenton process: a new approach for micropollutant removal from urban wastewater, Photochemical and Photobiological Sciences, 16(1) (2017) 72-78. https://doi.org/10.1039/C6PP00245E
[143] A.J. Expósito, D.A. Patterson, J.M. Monteagudo, A. Durán, Sono-photo-degradation of carbamazepine in a thin falling film reactor: Operation costs in pilot plant, Ultrasonics Sonochemistry,34 (2017) 496-503. https://doi.org/10.1016/j.ultsonch.2016.06.029

Related products