Application of adsorption techniques for sour and greenhouse gas treatment

$15.95

Application of adsorption techniques for sour and greenhouse gas treatment

Safdar Hossain SK, Mohammed Mozahar Hossain

Sour (SO2, NOX & H2S) and greenhouse gases (CO2) are present in various proportions in most of the gaseous effluents from industrial facilities and automobiles. Recently, the rise in their concentration in the atmosphere has begun to show a detrimental effect on humans and other components of the ecosystems. While new, more efficient processes have now been designed with more stringent environmental regulations, but with the prevalent use of current polluting sources, warrants the need for devising efficient abatement and separation techniques for the harmful gases from flue gases, and their subsequent storage or destruction. Capture of harmful gases using solid adsorbent is a commercially promising method for the treatment of the flue gas from conventional power plants. In this chapter, we present an up to date account of the various types of conventional and emerging solid adsorbents for the capture of sour and greenhouse gases from flue gas. Major types of adsorption equipment used in the industry for the gas treatment are briefly discussed.

Keywords
Greenhouse Gases, Sour Gases, Treatment Technologies, Adsorption, Pressure Swing Adsorption

Published online 4/25/2017, 34 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Safdar Hossain SK, Mohammed Mozahar Hossain, ‘Application of adsorption techniques for sour and greenhouse gas treatment’, Materials Research Foundations, Vol. 15, pp 193-226, 2017

DOI: http://dx.doi.org/10.21741/9781945291333-8

The article was published as article 8 of the book Applications of Adsorption and Ion Exchange Chromatography in Waste Water Treatment

References
[1] J.C. Abanades, B. Arias, A. Lyngfelt, T. Mattisson, D.E. Wiley, H. Li, M.T. Ho, E. Mangano, S. Brandani, Emerging CO2 capture systems, International Journal of Greenhouse Gas Control, 40 (2015) 126-166.
[2] D. U.S. Energy Information Administration: Washington, Annual Energy Outlook, 2016.
[3] D. Toporov, Combustion of pulversied coal in a Mixture of Oxygen and Recycled Flue Gas, Elsevier Ltd., London, UK, 2014.
[4] P.J.Reddy, Clean Coal Technologies for Power Generation, CRC Press, Florida, USA, 2013.
[5] J. Gale, H. Herzog, J. Braitsch, U.E. Aronu, H.F. Svendsen, K.A. Hoff, O. Juliussen, Greenhouse Gas Control Technologies 9Solvent selection for carbon dioxide absorption, Energy Procedia, 1 (2009) 1051-1057.
[6] IEA, Energy Technology Perspectives 2010: Scenarios and Strategies to 2050, OECD Publishing Paris, 2009.
[7] W.F.J. Burgers, P.S. Northrop, H.S. Kheshgi, J.A. Valencia, Worldwide development potential for sour gas, Energy Procedia, 4 (2011) 2178-2184.
[8] A.E.O. 2016, U.S. Energy Information Administration: Washington, DC.
[9] C.A. Scholes, K.H. Smith, S.E. Kentish, G.W. Stevens, CO2 capture from pre-combustion processes—Strategies for membrane gas separation, International Journal of Greenhouse Gas Control, 4 (2010) 739-755.
[10] AL-Othman ZA, Inamuddin, Naushad M (2011) Adsorption thermodynamics of trichloroacetic acid herbicide on polypyrrole Th(IV) phosphate composite cation-exchanger. Chem Eng J 169:38–42.
[11] Al-Othman ZA, Inamuddin, Naushad M (2011) Determination of ion-exchange kinetic parameters for the poly-o-methoxyaniline Zr(IV) molybdate composite cation-exchanger. Chem Eng J 166:639–645.
[12] Y. Liu, T.M. Bisson, H. Yang, Z. Xu, Recent developments in novel sorbents for flue gas clean up, Fuel Processing Technology, 91 (2010) 1175-1197.
[13] M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chemical Engineering Research and Design, 89 (2011) 1609-1624.
[14] R.S. Haszeldine, Carbon Capture and Storage: How Green Can Black Be?, Science, 325 (2009) 1647-1652.
[15] S. Choi, J.H. Drese, C.W. Jones, Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources, ChemSusChem, 2 (2009) 796-854.
[16] F. Rezaei, A.A. Rownaghi, S. Monjezi, R.P. Lively, C.W. Jones, SOx/NOx Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions, Energy & Fuels, 29 (2015) 5467-5486.
[17] R. Balasubramanian, S. Chowdhury, Recent advances and progress in the development of graphene-based adsorbents for CO2 capture, Journal of Materials Chemistry A, 3 (2015) 21968-21989.
[18] A.L. Chaffee, G.P. Knowles, Z. Liang, J. Zhang, P. Xiao, P.A. Webley, CO2 capture by adsorption: Materials and process development, International Journal of Greenhouse Gas Control, 1 (2007) 11-18.
[19] I. Kabalan, B. Lebeau, H. Nouali, J. Toufaily, T. Hamieh, B. Koubaissy, J.-P. Bellat, T.J. Daou, New Generation of Zeolite Materials for Environmental Applications, The Journal of Physical Chemistry C, 120 (2016) 2688-2697.
[20] Y. Kamimura, M. Shimomura, A. Endo, CO2 adsorption–desorption properties of zeolite beta prepared from OSDA-free synthesis, Microporous and Mesoporous Materials, 219 (2016) 125-133.
[21] B.M. Weckhuysen, J. Yu, Recent advances in zeolite chemistry and catalysis, Chemical Society Reviews, 44 (2015) 7022-7024.
[22] E.J. GarcÃa, J. Pérez-Pellitero, G.D. Pirngruber, C. Jallut, M. Palomino, F. Rey, S. Valencia, Tuning the Adsorption Properties of Zeolites as Adsorbents for CO2 Separation: Best Compromise between the Working Capacity and Selectivity, Industrial & Engineering Chemistry Research, 53 (2016) 9860-9874.
[23] S. Kesraoui-Ouki, C.R. Cheeseman, R. Perry, Natural zeolite utilisation in pollution control: A review of applications to metals’ effluents, Journal of Chemical Technology & Biotechnology, 59 (1994) 121-126.
[24] D. Barthomeuf, Conjugate acid-base pairs in zeolites, The Journal of Physical Chemistry, 88 (1984) 42-45.
[25] J. Pawlesa, A.t. Zukal, J.أ. ؤŒejka, Synthesis and adsorption investigations of zeolites MCM-22 andآ MCM-49 modified by alkali metal cations, Adsorption, 13 (2007) 257-265.
[26] P.J.E. Harlick, F.H. Tezel, An experimental adsorbent screening study for CO2 removal from N2, Microporous and Mesoporous Materials, 76 (2004) 71-79.
[27] S. Cavenati, C.A. Grande, A.r.E. Rodrigues, Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures, Journal of Chemical & Engineering Data, 49 (2004) 1095-1101.
[28] R.V. Siriwardane, M.-S. Shen, E.P. Fisher, J. Losch, Adsorption of CO2 on Zeolites at Moderate Temperatures, Energy & Fuels, 19 (2005) 1153-1159.
[29] S.U. Rege, R.T. Yang, A novel FTIR method for studying mixed gas adsorption at low concentrations: H2O and CO2 on NaX zeolite and خ³-alumina, Chemical Engineering Science, 56 (2001) 3781-3796.
[30] F. Branddani, D.M. Ruthven, The effect of water on the adsosprtion of CO2 and C3H8 on the type X zeolites, Industrial & Engineering Chemistry Research, 43 (2004) 8339-8344.
[31] F. Gholipour, M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling, The Journal of Supercritical Fluids, 111 (2016) 47-54.
[32] L. Hauchhum, P. Mahanta, Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed, International Journal of Energy and Environmental Engineering, 5 (2014) 349-356.
[33] A. Demirbas, Adsorption of Sulfur Dioxide from Coal Combustion Gases on Natural Zeolite, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28 (2006) 1329-1335.
[34] M. Sakizci, B. Erdoğan Alver, E. Yörükoğullari, Influence of the exchangeable cations on SO2 adsorption capacities of clinoptilolite-rich natural zeolite, Adsorption, 17 (2011) 739.
[35] A.K. Gupta, S. Ibrahim, A. Al Shoaibi, Advances in sulfur chemistry for treatment of acid gases, Progress in Energy and Combustion Science, 54 (2016) 65-92.
[36] T. Kopaq∗, E. Kaymakgi, M. Kopac, DYNAMIC ADSORPTION OF S02 ON ZEOLITE MOLECULAR SIEVES†Chemical Engineering Communications, 164 (1998) 99-109.
[37] I.-C. Marcu, I. Sandulescu, Study of sulfur dioxide adsosprtion on Y zeolite, Journal of Serbian Chemical Society, 67 (2004) 563-569.
[38] A. Srinivasan, M.W. Grutzeck, The Adsorption of SO2 by Zeolites Synthesized from Fly Ash, Environmental Science & Technology, 33 (1999) 1464-1469.
[39] K. Skalska, J.S. Miller, S. Ledakowicz, Trends in NOx abatement: A review, Science of The Total Environment, 408 (2010) 3976-3989.
[40] H. Yahiro, M. Iwamoto, Copper ion-exchanged zeolite catalysts in deNOx reaction, Applied Catalysis A: General, 222 (2001) 163-181.
[41] S.C. Ma, J. Yao, X. Ma, L. Gao, M. Guo, Removal of SO2 and NOX Using Microwave Swing Adsorption over Activated Carbon Carried Catalyst, Chemical Engineering & Technology, 36 (2013) 1217-1224.
[42] Y. Belmabkhout, A. Sayari, Effect of pore expansion and amine functionalization ofآ mesoporous silica on CO2 adsorption over a wide range ofآ conditions, Adsorption, 15 (2009) 318-328.
[43] R. Serna-Guerrero, A. Sayari, Applications of Pore-Expanded Mesoporous Silica. 7. Adsorption of Volatile Organic Compounds, Environmental Science & Technology, 41 (2007) 4761-4766.
[44] Y. Wang, M.D. LeVan, Adsorption Equilibrium of Carbon Dioxide and Water Vapor on Zeolites 5A and 13X and Silica Gel: Pure Components, Journal of Chemical & Engineering Data, 54 (2009) 2839-2844.
[45] N. Casas, J. Schell, R. Pini, M. Mazzotti, Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling, Adsorption, 18 (2012) 143-161.
[46] F.-Y. Chang, K.-J. Chao, H.-H. Cheng, C.-S. Tan, Adsorption of CO2 onto amine-grafted mesoporous silicas, Separation and Purification Technology, 70 (2009) 87-95.
[47] S.-w. Choi, H.-K. Bae, Adsorption of CO2 on amine-impregnated mesoporous MCM41 silica, KSCE Journal of Civil Engineering, 18 (2014) 1977-1983.
[48] M.R. Mello, D. Phanon, G.Q. Silveira, P.L. Llewellyn, C.l.M. Ronconi, Amine-modified MCM-41 mesoporous silica for carbon dioxide capture, Microporous and Mesoporous Materials, 143 (2011) 174-179.
[49] V. Zeleإˆأ،k, M. Badaniؤچovأ،, D. Halamovأ،, J. ؤŒejka, A. Zukal, N. Murafa, G. Goerigk, Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture, Chemical Engineering Journal, 144 (2008) 336-342.
[50] B. Guo, L. Chang, K. Xie, Adsorption of Carbon Dioxide on Activated Carbon, Journal of Natural Gas Chemistry, 15 (2006) 223-229.
[51] N.P. Wickramaratne, M. Jaroniec, Activated Carbon Spheres for CO2 Adsorption, ACS Applied Materials & Interfaces, 5 (2013) 1849-1855.
[52] R. Saxena, V.K. Singh, E.A. Kumar, Carbon Dioxide Capture and Sequestration by Adsorption on Activated Carbon, Energy Procedia, 54 (2013) 320-329.
[53] S.B. Sinnott, R. Andrews, Carbon Nanotubes: Synthesis, Properties, and Applications, Critical Reviews in Solid State and Materials Sciences, 26 (2001) 145-249.
[54] Y. Yan, J. Miao, Z. Yang, F.-X. Xiao, H.B. Yang, B. Liu, Y. Yang, Carbon nanotube catalysts: recent advances in synthesis, characterization and applications, Chemical Society Reviews, 44 (2015) 3295-3346.
[55] J. Dai, P. Giannozzi, J. Yuan, Adsorption of pairs of NOx molecules on single-walled carbon nanotubes and formation of NO + NO3 from NO2, Surface Science, 603 (2009) 3234-3238.
[56] M.M. Gui, Y.X. Yap, S.-P. Chai, A.R. Mohamed, Multi-walled carbon nanotubes modified with (3-aminopropyl)triethoxysilane for effective carbon dioxide adsorption, International Journal of Greenhouse Gas Control, 14 (2013) 65-73.
[57] M. Rahimi, J.K. Singh, D.J. Babu, J.r.J. Schneider, F. Mأ¼ller-Plathe, Understanding Carbon Dioxide Adsorption in Carbon Nanotube Arrays: Molecular Simulation and Adsorption Measurements, The Journal of Physical Chemistry C, 117 (2013) 13492-13501.
[58] C.W. Tan, K.H. Tan, Y.T. Ong, A.R. Mohamed, S.H.S. Zein, S.H. Tan, Energy and environmental applications of carbon nanotubes, Environmental Chemistry Letters, 10 (2015) 265-273.
[59] Y.T. Ong, A.L. Ahmad, S.H.S. Zein, S.H. Tan, A review on carbon nanotubes in an environmental protection and green engineering perspective, Brazilian Journal of Chemical Engineering, 27 227-242.
[60] M. Cinke, J. Li, C.W. Bauschlicher Jr, A. Ricca, M. Meyyappan, CO2 adsorption in single-walled carbon nanotubes, Chemical Physics Letters, 376 (2003) 761-766.
[61] F. Su, C. Lu, W. Cnen, H. Bai, J.F. Hwang, Capture of CO2 from flue gas via multiwalled carbon nanotubes, Science of The Total Environment, 407 (2009) 3017-3023.
[62] N. Omidfar, A. Mohamadalizadeh, S.H.C.A.P.J.R. Mousavi, Carbon dioxide adsorption by modified carbon nanotubes, Asia-Pacific Journal of Chemical Engineering, 10 (2015) 885-892.
[63] S. Khalili, A.A. Ghoreyshi, M.Jahanshahi, K.Pirzadeh, Clean Soil Air Water. 10/2013, CLEAN – Soil, Air, Water, 41 (2013) 935-938.
[64] M. Rahimi, D.J. Babu, J.K. Singh, Y.-B. Yang, J.r.J. Schneider, F. Mأ¼ller-Plathe, Double-walled carbon nanotube array for CO2 and SO2 adsorption, The Journal of Chemical Physics, 143 (2015) 124701.
[65] M. Barberio, P. Barone, A. Imbrogno, F. Xu, CO2 adsorption on silver nanoparticle/carbon nanotube nanocomposites: A study of adsorption characteristics, physica status solidi (b), 252 (2015) 1955-1959.
[66] M. Rahimi, J.K. Singh, F. Mأ¼ller-Plathe, CO2 Adsorption on Charged Carbon Nanotube Arrays: A Possible Functional Material for Electric Swing Adsorption, The Journal of Physical Chemistry C, 119 (2015) 15232-15239.
[67] R.Q. Long, R.T. Yang, Carbon Nanotubes as a Superior Sorbent for Nitrogen Oxides, Industrial & Engineering Chemistry Research, 40 (2001) 4288-4291.
[68] A.I. Vasylenko, M.V. Tokarchuk, S. Jurga, Effect of a Vacancy in Single-Walled Carbon Nanotubes on He and NO Adsorption, The Journal of Physical Chemistry C, 119 (2015) 5113-5116.
[69] F. Sun, J. Gao, Y. Zhu, G. Chen, S. Wu, Y. Qin, Adsorption of SO2 by typical carbonaceous material: a comparative study of carbon nanotubes and activated carbons, Adsorption, 19 (2013) 959-966.
[70] M. Yoosefian, M. Zahedi, A. Mola, S. Naserian, A DFT comparative study of single and double SO2 adsorption on Pt-doped and Au-doped single-walled carbon nanotube, Applied Surface Science, 349 (2015) 864-869.
[71] M. Enterrأa, J.L. Figueiredo, Nanostructured mesoporous carbons: Tuning texture and surface chemistry, Carbon, 108 (2016) 79-102.
[72] C. Liang, Z. Li, S. Dai, Mesoporous Carbon Materials: Synthesis and Modification, Angewandte Chemie International Edition, 47 (2008) 3696-3717.
[73] H. Wang, F.L.Y. Lam, X. Hu, K.M. Ng, Ordered Mesoporous Carbon as an Efficient and Reversible Adsorbent for the Adsorption of Fullerenes, Langmuir, 22 (2006) 4583-4588.
[74] Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, D. Zhao, A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic−Organic Self-Assembly, Chemistry of Materials, 18 (2006) 4447-4464.
[75] T.-Y. Ma, L. Liu, Z.-Y. Yuan, Direct synthesis of ordered mesoporous carbons, Chemical Society Reviews, 42 (2013) 3977-4003.
[76] C. Liu, M. Yu, Y. Li, J. Li, J. Wang, C. Yu, L. Wang, Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes, Nanoscale, 7 (2015) 11580-11590.
[77] K.M. Nelson, S.M. Mahurin, R.T. Mayes, B. Williamson, C.M. Teague, A.J. Binder, L. Baggetto, G.M. Veith, S. Dai, Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors, Microporous and Mesoporous Materials, 222 (2016) 94-103.
[78] M. Wang, L. Yao, J. Wang, Z. Zhang, W. Qiao, D. Long, L. Ling, Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture, Applied Energy, 168 (2016) 282-290.
[79] B. Yuan, X. Wu, Y. Chen, J. Huang, H. Luo, S. Deng, Adsorption of CO2, CH4, and N2 on Ordered Mesoporous Carbon: Approach for Greenhouse Gases Capture and Biogas Upgrading, Environmental Science & Technology, 47 (2013) 5474-5480.
[80] K.S. Lakhi, W.S. Cha, J.-H. Choy, M. Al-Ejji, A.M. Abdullah, A.M. Al-Enizi, A. Vinu, Synthesis of mesoporous carbons with controlled morphology and pore diameters from SBA-15 prepared through the microwave-assisted process and their CO2 adsorption capacity, Microporous and Mesoporous Materials, 233 (2016) 44-52.
[81] K.S. Lakhi, W.S. Cha, S. Joseph, B.J. Wood, S.S. Aldeyab, G. Lawrence, J.-H. Choy, A. Vinu, Cage type mesoporous carbon nitride with large mesopores for CO2 capture, Catalysis Today, 243 (2015) 209-217.
[82] C. Goel, H. Bhunia, P.K. Bajpai, Mesoporous carbon adsorbents from melamine–formaldehyde resin using nanocasting technique for CO2 adsorption, Journal of Environmental Sciences, 32 (2015) 238-248.
[83] C.-C. Huang, S.-C. Shen, Adsorption of CO2 on chitosan modified CMK-3 at ambient temperature, Journal of the Taiwan Institute of Chemical Engineers, 44 (2013) 89-94.
[84] F. Cao, J. Chen, M. Ni, H. Song, G. Xiao, W. Wu, X. Gao, K. Cen, Adsorption of NO on ordered mesoporous carbon and its improvement by cerium, RSC Advances, 4 (2014) 16281-16289.
[85] J. Chen, F. Cao, S. Chen, M. Ni, X. Gao, K. Cen, Adsorption kinetics of NO on ordered mesoporous carbon (OMC) and cerium-containing OMC (Ce-OMC), Applied Surface Science, 317 (2014) 26-34.
[86] S. Gadipelli, Z.X. Guo, Graphene-based materials: Synthesis and gas sorption, storage and separation, Progress in Materials Science, 69 (2015) 1-60.
[87] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb Carbon: A Review of Graphene, Chemical Reviews, 110 (2010) 132-145.
[88] W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of Graphene and Its Applications: A Review, Critical Reviews in Solid State and Materials Sciences, 35 (2010) 52-71.
[89] K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Environmental applications using graphene composites: water remediation and gas adsorption, Nanoscale, 5 (2013) 3149-3171.
[90] K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature, 490 (2012) 192-200.
[91] A. Ghosh, K.S. Subrahmanyam, K.S. Krishna, S. Datta, A. Govindaraj, S.K. Pati, C.N.R. Rao, Uptake of H2 and CO2 by Graphene, The Journal of Physical Chemistry C, 112 (2008) 15704-15707.
[92] R. Kumar, V.M. Suresh, T.K. Maji, C.N.R. Rao, Porous graphene frameworks pillared by organic linkers with tunable surface area and gas storage properties, Chemical Communications, 50 (2014) 2015-2017.
[93] W. Huang, X. Zhou, Q. Xia, J. Peng, H. Wang, Z. Li, Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO2/CH4, Industrial & Engineering Chemistry Research, 53 (2014) 11176-11184.
[94] V. Presser, J. McDonough, S.-H. Yeon, Y. Gogotsi, Effect of pore size on carbon dioxide sorption by carbide derived carbon, Energy & Environmental Science, 4 (2011) 3059-3066.
[95] M.E. Casco, M. MartÃnez-Escandell, J. Silvestre-Albero, F. RodrÃguez-Reinoso, Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure, Carbon, 67 (2014) 230-235.
[96] L.-Y. Meng, S.-J. Park, Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates, Journal of Colloid and Interface Science, 386 (2012) 285-290.
[97] G. Ning, C. Xu, L. Mu, G. Chen, G. Wang, J. Gao, Z. Fan, W. Qian, F. Wei, High capacity gas storage in corrugated porous graphene with a specific surface area-lossless tightly stacking manner, Chemical Communications, 48 (2012) 6815-6817.
[98] J. Li, M. Hou, Y. Chen, W. Cen, Y. Chu, S. Yin, Enhanced CO2 capture on graphene via N, S dual-doping, Applied Surface Science, (2014).
[99] W. Xing, C. Liu, Z. Zhou, L. Zhang, J. Zhou, S. Zhuo, Z. Yan, H. Gao, G. Wang, S.Z. Qiao, Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction, Energy & Environmental Science, 5 (2012) 7323-7327.
[100] P. Tamilarasan, S. Ramaprabhu, Integration of polymerized ionic liquid with graphene for enhanced CO2 adsorption, Journal of Materials Chemistry A, 3 (2015) 101-108.
[101] D. Zhou, Q.-Y. Cheng, Y. Cui, T. Wang, X. Li, B.-H. Han, Graphene–terpyridine complex hybrid porous material for carbon dioxide adsorption, Carbon, 66 (2014) 592-598.
[102] Y. Zhao, H. Ding, Q. Zhong, Preparation and characterization of aminated graphite oxide for CO2 capture, Applied Surface Science, 258 (2012) 4301-4307.
[103] D.J. Babu, F.G. Kuhl, S. Yadav, D. Markert, M. Bruns, M.J. Hampe, J.J. Schneider, Adsorption of pure SO2 on nanoscaled graphene oxide, RSC Advances, 6 (2016) 36834-36839.
[104] S. Tang, Z. Cao, Adsorption of nitrogen oxides on graphene and graphene oxides: Insights from density functional calculations, The Journal of Chemical Physics, 134 (2011) 044710.
[105] A.S. Rad, E. Abedini, Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: A first principles study, Applied Surface Science, 360, Part B (2016) 1041-1046.
[106] A.H. Chughtai, N. Ahmad, H.A. Younus, A. Laypkov, F. Verpoort, Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations, Chemical Society Reviews, 44 (2015) 6804-6849.
[107] H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to Metal–Organic Frameworks, Chemical Reviews, 112 (2012) 673-674.
[108] D. Farrusseng, S. Aguado, C. Pinel, Metal–Organic Frameworks: Opportunities for Catalysis, Angewandte Chemie International Edition, 48 (2009) 7502-7513.
[109] O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ã.z.r. Yazaydın, J.T. Hupp, Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?, Journal of the American Chemical Society, 134 (2012) 15016-15021.
[110] B.r. Arstad, H. Fjellvأ¥g, K.O. Kongshaug, O. Swang, R. Blom, Amine functionalised metal organic frameworks (MOFs) asآ adsorbents for carbon dioxide, Adsorption, 14 (2008) 755-762.
[111] J.-R. Li, Y. Ma, M.C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P.B. Balbuena, H.-C. Zhou, Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coordination Chemistry Reviews, 255 (2011) 1791-1823.
[112] H. Dathe, Peringer E, R. V, J. A, L. JA, Metal organic frameworks based on Cu2þ and benzene-1,3,5-tricarboxylate as host for SO2 trapping agents, C R Chemie, 8 (2005) 753-763.
[113] C.A. Fernandez, P.K. Thallapally, R.K. Motkuri, S.K. Nune, J.C. Sumrak, J. Tian, J. Liu, Gas-Induced Expansion and Contraction of a Fluorinated Metal−Organic Framework, Crystal Growth & Design, 10 (2010) 1037-1039.
[114] X.-D. Song, S. Wang, C. Hao, J.-S. Qiu, Investigation of SO2 gas adsorption in metal–organic frameworks by molecular simulation, Inorganic Chemistry Communications, 46 (2014) 277-281.
[115] A.C. McKinlay, B. Xiao, D.S. Wragg, P.S. Wheatley, I.L. Megson, R.E. Morris, Exceptional Behavior over the Whole Adsorption−Storage−Delivery Cycle for NO in Porous Metal Organic Frameworks, Journal of the American Chemical Society, 130 (2008) 10440-10444.
[116] G. Nickerl, M. Leistner, S. Helten, V. Bon, I. Senkovska, S. Kaskel, Integration of accessible secondary metal sites into MOFs for H2S removal, Inorganic Chemistry Frontiers, 1 (2014) 325-330.
[117] C. Petit, B. Mendoza, T.J. Bandosz, Hydrogen Sulfide Adsorption on MOFs and MOF/Graphite Oxide Composites, ChemPhysChem, 11 (2010) 3678-3684.
[118] H. Brauer, Y.B.G. Varma, Design and Operation of Adsorption Equipment, Air Pollution Control Equipment, Springer Berlin Heidelberg, Berlin, Heidelberg, 1981, pp. 307-333.
[119] J.A. Delgado, M.a.A. Uguina, J.L. Sotelo, B. Ruأ¬z, J.M. Gأ³mez, Fixed-bed adsorption of carbon dioxide/methane mixtures on silicalite pellets, Adsorption, 12 (2006) 5-18.
[120] C.A. Grande, Advances in Pressure Swing Adsorption for Gas Separation, ISRN Chemical Engineering, 2012 (2012) 13.
[121] P.R. Mhaskar, A.S. Moharir, Heuristics for synthesis and design of pressure-swing adsorption processes, Adsorption, 18 (2012) 275-295.
[122] F.G. Wiessner, Basics and industrial applications of pressure swing adsorption (PSA), the modern way to separate gas, Gas Separation & Purification, 2 (1988) 115-119.
[123] A. Andersen, S. Divekar, S. Dasgupta, J.H. Cavka, Aarti, A. Nanoti, A. Spjelkavik, A.N. Goswami, M.O. Garg, R. Blom, On the development of Vacuum Swing adsorption (VSA) technology for post-combustion CO2 capture, Energy Procedia, 37 (2013) 33-39.
[124] M.-W. Yang, N.-c. Chen, C.-h. Huang, Y.-t. Shen, H.-s. Yang, C.-t. Chou, Temperature Swing Adsorption Process for CO2 Capture Using Polyaniline Solid Sorbent, Energy Procedia, 63 (2014) 2351-2358.
[125] A. Ntiamoah, J. Ling, P. Xiao, P.A. Webley, Y. Zhai, CO2 Capture by Temperature Swing Adsorption: Use of Hot CO2-Rich Gas for Regeneration, Industrial & Engineering Chemistry Research, 55 (2016) 703-713.
[126] R.P.P.L. Ribeiro, C.A. Grande, A.E. Rodrigues, Electric Swing Adsorption for Gas Separation and Purification: A Review, Separation Science and Technology, 49 (2014) 1985-2002.
[127] B.-C. Chiang, M.-Y. Wey, C.-L. Yeh, Control of acid gases using a fluidized bed adsorber, Journal of Hazardous Materials, 101 (2003) 259-272.
[128] C.R. Mohanty, S. Adapala, B.C. Meikap, Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer, Journal of Hazardous Materials, 165 (2009) 427-434.
[129] S. Onitsuka, M. Ichiki, T. Watanabe, Method of removing NOx by adsorption, NOx adsorbent and apparatus for purifying NOx-containing gas, Google Patents, 1992.
[130] W.G. Matthews, H.C. Shaw, Selective adsorption of NOx from gas streams, Google Patents, 1979.