The bonded macro fiber composite (MFC) and woven kenaf effect analyses on the micro energy harvester performance of kenaf plate using modal testing and Taguchi method

$15.95

The bonded macro fiber composite (MFC) and woven kenaf effect analyses on the micro energy harvester performance of kenaf plate using modal testing and Taguchi method

A. Hamdan, F. Mustapha

The number of wind energy applications will continue to increase as fossil fuel reservoir keeps decreasing. More researches are recently conducted to employ a green material concept for turbine blades. The usage of natural fiber reinforced composite, especially kenaf fiber, in the fabrication of wind turbines needs to be given due attention. Woven and unwoven kenaf fiber is employed to fabricate composite plates which replicate the simple turbine blade model. In addition, Macro Fiber Composite (MFC) is attached to the kenaf plates for structural health monitoring and micro energy harvester purposes. The MFC used is attached with two techniques which are surface bonded and embedding into the plate. The modal testing analysis and Taguchi method is employed to investigate the effects of attached MFC technique. Bonded technique is suggested as the most influenced factor in micro energy harvesting at the vibration range of 20 to 60 Hz. Furthermore, the kenaf woven type, the distance from structure neutral axis, the stiffness of structure, the excitation vibration and the neutral frequency of a structure are highlighted as the factors influencing the performance of micro energy harvester.

Keywords
Modal Testing, Taguchi Method, Energy Harvester, Kenaf Fiber Composite, Macro Fiber Composite

Published online 3/16/2017, 44 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: A. Hamdan, F. Mustapha, ‘The bonded macro fiber composite (MFC) and woven kenaf effect analyses on the micro energy harvester performance of kenaf plate using modal testing and Taguchi method’, Materials Research Foundations, Vol. 13, pp 97-140, 2017

DOI: http://dx.doi.org/10.21741/9781945291296-5

The article was published as article 5 of the book Innovation in Smart Materials and Structural Health Monitoring for Composite Applications

References
[1] Akil, H. M., M. F. Omar, et al. (2011). “Kenaf fiber reinforced composites: A review.” Materials and Design 32: 4107–4121.
https://doi.org/10.1016/j.matdes.2011.04.008
[2] Ali, W. G. and S. W. Ibrahim (2012). “Power Analysis for Piezoelectric Energy Harvester.” Energy and Power Engineering 4: 496-505.
https://doi.org/10.4236/epe.2012.46063
[3] Anton, S. R. and H. A. Sodano (2007). “A review of power harvesting using piezoelectric materials (2003–2006).” Smart materials and structures 16: R1-R21.
https://doi.org/10.1088/0964-1726/16/3/R01
[4] Antony, J. and M. Kaye (1999). Experimental quality—A strategic approach to achieve and improve quality. Massachusetts, Kluwer Academic Publishers.
[5] Aziz, S. H. and M. P. Ansell (2004). “The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1 – Polyester resin matrix.” Compos Science Technology 64(9): 1219–30.
https://doi.org/10.1016/j.compscitech.2003.10.001
[6] Azrin Hani, A. R., T. S. Chan, et al. (2013). “Impact and Flexural Properties of Imbalance Plain Woven Coir and Kenaf Composite.” Applied Mechanics and Materials 271-272: 81-85.
https://doi.org/10.4028/www.scientific.net/AMM.271-272.81
[7] Cao, Y., K. Goda, et al. (2007). Mechanical properties of kenaf fibers reinforced biodegradable composites. Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials Vols 1 and 2: 299-302.
[8] Daqaq, M. F., C. Stabler, et al. (2009). “Investigation of Power Harvesting via Parametric Excitations.” Journal of Intelligent Material Systems and Structures 20(5): 545-557.
https://doi.org/10.1177/1045389X08100978
[9] Daue, T. P., J. Kunzmann, et al. “Energy harvesting systems using piezo-electric macro fiber composites.”
[10] Davoodi, M. M., S. M. Sapuan, et al. (2010). “Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam.” Materials and Design 31: 4927–4932.
https://doi.org/10.1016/j.matdes.2010.05.021
[11] Erturk, A. and D. J. Inman (2009). “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations.” Smart Materials and Structures 18(2).
https://doi.org/10.1088/0964-1726/18/2/025009
[12] Faruk, O., A. K. Bledzkia, et al. (2012). “Biocomposites reinforced with natural fibers: 2000–2010.” Progress in Polymer Science 37: 1552- 1596.
https://doi.org/10.1016/j.progpolymsci.2012.04.003
[13] Hamdan, A., F. Mustapha, et al. (2014). “A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective.” Renewable and Sustainable Energy Reviews 35: 23-30.
https://doi.org/10.1016/j.rser.2014.03.050
[14] Hani, A. R. A., R. Ahmad, et al. (2013). “Influence of Laminated Textile Structures on Mechanical Performance of NF-Epoxy Composites.” International Scholarly and Scientific Research & Innovation 7(6): 757-763.
[15] Hyun Jeong, S., Y.-T. Choi, et al. “Energy Harvesting Devices Using Macro-fiber Composite Materials.” Journal of Intelligent Material Systems and Structures 21(6): 647-658.
https://doi.org/10.1177/1045389X10361633
[16] Jenq, S. T., G. C. Hwang, et al. (1993). “The Effect of Square Cut-Outs on The Natural Frequencies and Mode Shapes of GRP Cross-Ply Laminates.” Composite Science and Technology 47: 91-101.
https://doi.org/10.1016/0266-3538(93)90100-U
[17] Larsen, G. C., M. H. Hansen, et al. (2002). Modal Analysis of Wind Turbine Blades. Risø National Laboratory, Roskilde, Denmark.
[18] Lee, S. H. and S. Q. Wang (2006). “Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent.” Composites Part a-Applied Science and Manufacturing 37(1): 80-91.
https://doi.org/10.1016/j.compositesa.2005.04.015
[19] Liu, W. J., M. Misra, et al. (2005). “‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation.” Polymer 46(8): 2710-2721.
https://doi.org/10.1016/j.polymer.2005.01.027
[20] M.H. Kahrobaiyan, M. Asghari, et al. (2014). “A Timoshenko beam element based on the modified couple stress theory.” International Journal of Mechanical Sciences 79: 78-83.
https://doi.org/10.1016/j.ijmecsci.2013.11.014
[21] Masseran, N., A.M.Razali, et al. (2012). “An analysis of wind power density derived from several wind speed density functions: The regional assessment on wind power in Malaysia.” Renewable and Sustainable Energy Reviews 16: 6476–6487.
https://doi.org/10.1016/j.rser.2012.03.073
[22] Masseran, N., A. M. Razali, et al. (2012). “Evaluating the wind speed persistence for several wind stations in Peninsular Malaysia.” Energy 37.
https://doi.org/10.1016/j.energy.2011.10.035
[23] Nishino, T., K. Hirao, et al. (2003). “Kenaf reinforced biodegradable composite.” Composites Science and Technology 63(9): 1281-1286.
https://doi.org/10.1016/S0266-3538(03)00099-X
[24] Ochi, S. (2008). “Mechanical properties of kenaf fibers and kenaf/PLA composites.” Mechanics of Materials 40(4-5): 446-452.
https://doi.org/10.1016/j.mechmat.2007.10.006
[25] Oksman, K., M. Skrifvars, et al. (2003). “Natural fibres as reinforcement in polylactic acid (PLA) composites.” Composites Science and Technology 63(9): 1317-1324.
https://doi.org/10.1016/S0266-3538(03)00103-9
[26] Pabut, O., G. Allikas, et al. (2012). Model validation and structural analysis of a small wind turbine blade. 8th International DAAAM Baltic Conference, Tallinn, Estonia.
[27] Park, R. and J. Jang (1997). “Stacking sequence effect of aramid – UHMPE hybrid composites by flexural test method.” Polymer Testing 16: 549-562.
https://doi.org/10.1016/S0142-9418(97)00018-4
[28] Park, S., J.-J. Lee, et al. (2008). “Electro-Mechanical Impedance-Based Wireless Structural Health Monitoring Using PCA-Data Compression and k-means Clustering Algorithms.” Journal of Intelligent Material Systems and Structures 19(4): 509-520.
https://doi.org/10.1177/1045389X07077400
[29] Phadke, M. S. (1989). Quality Engineering Using Robust Design. Englewood Cliffs, NJ, Prentice Hall.
[30] Plackett, D., T. L. Andersen, et al. (2003). “Biodegradable composites based on L-polylactide and jute fibres.” Composites Science and Technology 63(9): 1287-1296.
https://doi.org/10.1016/S0266-3538(03)00100-3
[31] Ralib, A. A. M., A. Nurashikin, et al. (2009). Fabrication Techniques and Performance of Piezoelectric Energy Harvesters. 3rd International Conference on Energy and Environment, Malacca.
https://doi.org/10.1109/iceenviron.2009.5398605
[32] Reza, M., M. Y. Jamaludin, et al. (2014). “Characteristics of continuous unidirectional kenaf fiber reinforced epoxy composites.” Materials and Design 64: 640-649.
https://doi.org/10.1016/j.matdes.2014.08.010
[33] Roslan, M. N., A. E. Ismail, et al. (2014). “Modelling Analysis on Mechanical Damage of Kenaf Reinforced Composite Plates under Oblique Impact Loadings.” Applied Mechanics and Materials 465-466: 1324-1328.
https://doi.org/10.4028/www.scientific.net/AMM.465-466.1324
[34] Shalwan, A. and B. F. Yousif (2013). “In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres.” Materials & Design: 14-24.
https://doi.org/10.1016/j.matdes.2012.07.014
[35] Shibata, S., Y. Cao, et al. (2008). “Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibers.” Composites Part A: Applied Science and Manufacturing 39: 640-6.
https://doi.org/10.1016/j.compositesa.2007.10.021
[36] Sodano, H. A., D. J. Inman, et al. (2005). “Comparison of piezoelectric energy harvesting devices for recharging batteries.” Journal of Intelligent Material Systems and Structures 16(10): 799-807.
https://doi.org/10.1177/1045389X05056681
[37] Song, H. J., Y.-T. Choi, et al. (2009). “Performance Evaluation of Multi-tier Energy Harvesters Using Macro-fiber Composite Patches.” Journal of Intelligent Material Systems and Structures 20(17): 2077-2088.
https://doi.org/10.1177/1045389X09347017
[38] Sopian, K., M. Y. H. Othman, et al. (1995). “The wind energy potential of Malaysia.” Renewable Energy 6(8): 1005-1016.
https://doi.org/10.1016/0960-1481(95)00004-8
[39] Stuart, T., Q. Liu, et al. (2006). “Structural biocomposites from flax – Part I: Effect of bio-technical fibre modification on composite properties.” Composites Part a-Applied Science and Manufacturing 37(3): 393-404.
https://doi.org/10.1016/j.compositesa.2005.06.002
[40] Taguchi, G. (1990). Introduction to Quality Engineering. Tokyo, Asian Productivity Organization.
[41] Tien, C. M. T. and N. S. Goo (2010). “Use of a piezo-composite generating element for harvesting wind energy in an urban region.” Aircraft Engineering and Aerospace Technology: An International Journal 82: 376-381.
https://doi.org/10.1108/00022661011104538
[42] Wambua, P., J. Ivens, et al. (2003). “Natural fibres: can they replace glass in fibre reinforced plastics?” Composites Science and Technology 63: 1259–1264.
https://doi.org/10.1016/S0266-3538(03)00096-4
[43] Wang, W., Z. Yang, et al. (2012). Macro fiber composite (MFC) piezoelectric actuator excitation method for in flight leading edge deicing. Advances in Structural Health Management and Composite Structures 2012 (ASHMCS 2012), Jeonju, Republic of Korea.
[44] Yahaya, R., S. Sapuan, et al. (2014). “Mechanical performance of woven kenaf-Kevlar hybrid composites.” Journal of Reinforced Plastics and Composites 33(24): 2242-2254.
https://doi.org/10.1177/0731684414559864
[45] Yahaya, R., S. M. Sapuan, et al. (2014). “Effects of Kenaf Contents and Fiber Orientation on Physical, Mechanical, and Morphological Properties of Hybrid Laminated Composites for Vehicle Spall Liners.” Polymer composites: 1469–1476.
[46] Yahaya, R., S. M. Sapuan, et al. (2014). “Mechanical performance of woven kenaf-Kevlar hybrid composites.” Journal of Reinforced Plastics and Composites.
https://doi.org/10.1177/0731684414559864
[47] Yahaya, R., S. M. Sapuan, et al. (2015). “Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites.” Materials and Design 67: 173-179.
https://doi.org/10.1016/j.matdes.2014.11.024
[48] Yousif, B. F., A. Shalwan, et al. (2012). “Flexural properties of treated and untreated kenaf/epoxy composites.” Materials and Design 40: 378-385.
https://doi.org/10.1016/j.matdes.2012.04.017
[49] Yousif, B. F., A. Shalwan, et al. (2012 ). “Flexural properties of treated and untreated kenaf/epoxy composites.” Materials and Design 40: 378-385.
https://doi.org/10.1016/j.matdes.2012.04.017
[50] Zampaloni, M., F. Pourboghrat, et al. (2007). “Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions.” Composites: Part A 38: 1569-1580.
https://doi.org/10.1016/j.compositesa.2007.01.001