Redox Flow Lithium Batteries


Redox Flow Lithium Batteries

Feng Pan, Yun Guang Zhu and Qing Wang

The penetration of battery technologies has been expanding from portable electronics to electric vehicles and power grids. The increasing demand for energy storage in new areas drives the development of battery technologies with longer lifetime, better safety and lower cost. Redox flow batteries as a distinct energy storage system from those with enclosed configurations, present decoupled energy storage and power generation and have been taken as an important candidate for large-scale stationary energy storage. In this chapter, the development of redox flow batteries is briefly reviewed and the issues confronted by the conventional flow batteries are analyzed. As an implementable solution, redox flow lithium batteries based on redox targeting reactions between redox mediators and battery materials are introduced. Its working principle, research progress and future development are discussed in detail.

Redox Flow Battery, Redox Targeting, Energy Density, Redox Flow Lithium Battery

Published online 3/16/2017, 22 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Feng Pan, Yun Guang Zhu and Qing Wang, ‘Redox Flow Lithium Batteries’, Materials Research Foundations, Vol. 12, pp 185-206, 2017


The article was published as article 8 of the book Recent Advances in Energy Storage Materials and Devices

[1] Soloveichik, G. L., Battery technologies for large-scale stationary energy storage. Annual review of chemical and biomolecular engineering 2011, 2, 503-527.
[2] Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.; Mjalli, F. S.; Saleem, M., Progress in Flow Battery Research and Development. Journal of The Electrochemical Society 2011, 158 (8), 55.
[3] Díaz-González, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafáfila-Robles, R., A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews 2012, 16 (4), 2154-2171.
[4] Thaller, L. H. Electrically rechargeable redox flow cell. 3996064, 1976.
[5] Skyllas‐Kazacos, M.; Rychcik, M.; Robins, R. G.; Fane, A. G.; Green, M. A., New All‐Vanadium Redox Flow Cell. Journal of The Electrochemical Society 1986, 133 (5), 1057-1058.
[6] Skyllas-Kazacos, M.; Kazacos, G.; Poon, G.; Verseema, H., Recent advances with UNSW vanadium-based redox flow batteries. International Journal of Energy Research 2010, 34 (2), 182-189.
[7] Ponce de León, C.; Frías-Ferrer, A.; González-García, J.; Szánto, D. A.; Walsh, F. C., Redox flow cells for energy conversion. Journal of Power Sources 2006, 160 (1), 716-732.
[8] Lim, H. S.; Lackner, A. M.; Knechtli, R. C., Zinc‐Bromine Secondary Battery. Journal of The Electrochemical Society 1977, 124 (8), 1154-1157.
[9] Rydh, C. J.; Sandén, B. A., Energy analysis of batteries in photovoltaic systems. Part II: Energy return factors and overall battery efficiencies. Energy conversion and management 2005, 46 (11), 1980-2000.
[10] Skyllas‐Kazacos, M.; Grossmith, F., Efficient vanadium redox flow cell. Journal of the Electrochemical Society 1987, 134 (12), 2950-2953.
[11] Skyllas-Kazacos, M.; Rychcik, M.; Robins, R. G.; Fane, A.; Green, M., New all-vanadium redox flow cell. J. Electrochem. Soc.;(United States) 1986, 133.
[12] Skyllas-Kazacos, M.; Rychick, M.; Robins, R. All-vanadium redox battery. 4786567, 1988.
[13] Sum, E.; Rychcik, M.; Skyllas-Kazacos, M., Investigation of the V (V)/V (IV) system for use in the positive half-cell of a redox battery. Journal of Power sources 1985, 16 (2), 85-95.
[14] Sum, E.; Skyllas-Kazacos, M., A study of the V (II)/V (III) redox couple for redox flow cell applications. Journal of Power sources 1985, 15 (2), 179-190.
[15] Kazacos, M.; Cheng, M.; Skyllas-Kazacos, M., Vanadium redox cell electrolyte optimization studies. Journal of Applied electrochemistry 1990, 20 (3), 463-467.
[16] Skyllas-Kazacos, M.; Kasherman, D.; Hong, D.; Kazacos, M., Characteristics and performance of 1 kW UNSW vanadium redox battery. Journal of Power Sources 1991, 35 (4), 399-404.
[17] Rahman, F.; Skyllas-Kazacos, M., Solubility of vanadyl sulfate in concentrated sulfuric acid solutions. Journal of Power Sources 1998, 72 (2), 105-110.
[18] Skyllas‐Kazacos, M.; Peng, C.; Cheng, M., Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery. Electrochemical and solid-state letters 1999, 2 (3), 121-122.
[19] Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical energy storage for the grid: a battery of choices. Science 2011, 334 (6058), 928-935.
[20] Chen, J.-q.; Wang, Q.; Wang, B.-g., Research progress in key materials for all vanadium redox flow battery. Modern Chemical Industry 2006, 26 (9), 21.
[21] Kim, J.-H.; Kim, K. J.; Park, M.-S.; Lee, N. J.; Hwang, U.; Kim, H.; Kim, Y.-J., Development of metal-based electrodes for non-aqueous redox flow batteries. Electrochemistry Communications 2011, 13 (9), 997-1000.
[22] Hosseiny, S. S.; Saakes, M.; Wessling, M., A polyelectrolyte membrane-based vanadium/air redox flow battery. Electrochemistry Communications 2011, 13 (8), 751-754.
[23] Menictas, C.; Skyllas-Kazacos, M., Performance of vanadium-oxygen redox fuel cell. Journal of Applied Electrochemistry 2011, 41 (10), 1223-1232.
[24] Lim, H.; Lackner, A.; Knechtli, R., Zinc‐bromine secondary battery. Journal of the Electrochemical Society 1977, 124 (8), 1154-1157.
[25] Zhang, L.; Lai, Q.; Zhang, J.; Zhang, H., A high-energy-density redox flow battery based on zinc/polyhalide chemistry. ChemSusChem 2012, 5 (5), 867-9.
[26] Leung, P. K.; Ponce-de-León, C.; Low, C. T. J.; Shah, A. A.; Walsh, F. C., Characterization of a zinc–cerium flow battery. Journal of Power Sources 2011, 196 (11), 5174-5185.
[27] Gong, K.; Ma, X.; Conforti, K. M.; Kuttler, K. J.; Grunewald, J. B.; Yeager, K. L.; Bazant, M. Z.; Gu, S.; Yan, Y., A zinc–iron redox-flow battery under $100 per kW h of system capital cost. Energy & Environmental Science 2015, 8 (10), 2941-2945.
[28] Li, B.; Nie, Z.; Vijayakumar, M.; Li, G.; Liu, J.; Sprenkle, V.; Wang, W., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nature Communication 2015, 6, 6303.
[29] Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.; Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J., A metal-free organic-inorganic aqueous flow battery. Nature 2014, 505 (7482), 195-198.
[30] Lin, K.; Chen, Q.; Gerhardt, M. R.; Tong, L.; Kim, S. B.; Eisenach, L.; Valle, A. W.; Hardee, D.; Gordon, R. G.; Aziz, M. J.; Marshak, M. P., Alkaline quinone flow battery. Science 2015, 349 (6255), 1529-1532.
[31] Lin, K.; Gómez-Bombarelli, R.; Beh, E. S.; Tong, L.; Chen, Q.; Valle, A.; Aspuru-Guzik, A.; Aziz, M. J.; Gordon, R. G., A redox-flow battery with an alloxazine-based organic electrolyte. Nature Energy 2016, 1, 16102.
[32] Herr, T.; Noack, J.; Fischer, P.; Tübke, J., 1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries. Electrochimica Acta 2013, 113, 127-133.
[33] Shinkle, A. A.; Pomaville, T. J.; Sleightholme, A. E. S.; Thompson, L. T.; Monroe, C. W., Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries. Journal of Power Sources 2014, 248, 1299-1305.
[34] Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J. G., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society 2013, 135 (11), 4450-6.
[35] Wang, Y.; He, P.; Zhou, H., Li-Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li-ion and Redox Flow Batteries. Advanced Energy Materials 2012, 2 (7), 770-779.
[36] Zhao, Y.; Ding, Y.; Song, J.; Peng, L.; Goodenough, J. B.; Yu, G., A reversible Br 2/Br− redox couple in the aqueous phase as a high-performance catholyte for alkali-ion batteries. Energy & Environmental Science 2014.
[37] Zhao, Y.; Wang, L.; Byon, H. R., High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nature communications 2013, 4, 1896.
[38] Zhao, Y.; Byon, H. R., High-Performance Lithium-Iodine Flow Battery. Advanced Energy Materials 2013, 3 (12), 1630-1635.
[39] Zhao, Y.; Hong, M.; Bonnet Mercier, N.; Yu, G.; Choi, H. C.; Byon, H. R., A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Nano letters 2014, 14 (2), 1085-92.
[40] Zhao, Y.; Ding, Y.; Song, J.; Li, G.; Dong, G.; Goodenough, J. B.; Yu, G., Sustainable Electrical Energy Storage through the Ferrocene/Ferrocenium Redox Reaction in Aprotic Electrolyte. Angewandte Chemie International Edition 2014, n/a-n/a.
[41] Yang, Y.; Zheng, G.; Cui, Y., A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy & Environmental Science 2013, 6 (5), 1552-1558.
[42] Wei, X.; Xu, W.; Vijayakumar, M.; Cosimbescu, L.; Liu, T.; Sprenkle, V.; Wang, W., TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries. Adv Mater 2014, 26 (45), 7649-53.
[43] Duduta, M.; Ho, B.; Wood, V. C.; Limthongkul, P.; Brunini, V. E.; Carter, W. C.; Chiang, Y.-M., Semi-Solid Lithium Rechargeable Flow Battery. Advanced Energy Materials 2011, 1 (4), 511-516.
[44] Chen, H.; Zou, Q.; Liang, Z.; Liu, H.; Li, Q.; Lu, Y.-C., Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries. Nat Commun 2015, 6.
[45] Chen, H.; Lu, Y. C., A High‐Energy‐Density Multiple Redox Semi‐Solid‐Liquid Flow Battery. Advanced Energy Materials 2016.
[46] Fan, F. Y.; Woodford, W. H.; Li, Z.; Baram, N.; Smith, K. C.; Helal, A.; McKinley, G. H.; Carter, W. C.; Chiang, Y. M., Polysulfide flow batteries enabled by percolating nanoscale conductor networks. Nano letters 2014, 14 (4), 2210-8.
[47] Wang, Q.; Zakeeruddin, S. M.; Wang, D.; Exnar, I.; Gratzel, M., Redox targeting of insulating electrode materials: a new approach to high-energy-density batteries. Angewandte Chemie 2006, 45 (48), 8197-200.
[48] Huang, Q.; Li, H.; Gratzel, M.; Wang, Q., Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery. Physical chemistry chemical physics : PCCP 2013, 15 (6), 1793-7.
[49] Pan, F.; Yang, J.; Huang, Q.; Wang, X.; Huang, H.; Wang, Q., Redox Targeting of Anatase TiO2 for Redox Flow Lithium‐Ion Batteries. Advanced Energy Materials 2014, 4 (15).
[50] Pan, F.; Huang, Q.; Huang, H.; Wang, Q., High-Energy Density Redox Flow Lithium Battery with Unprecedented Voltage Efficiency. Chemistry of Materials 2016, 28 (7), 2052-2057.
[51] Huang, Q.; Yang, J.; Ng, C. B.; Jia, C.; Wang, Q., Redox Flow Lithium Battery Based on the Redox Targeting Reactions between LiFePO4 and Iodide. Energy & Environmental Science 2016, 9 (3), 917-921.
[52] Li, J.; Yang, L.; Yang, S.; Lee, J. Y., The Application of Redox Targeting Principles to the Design of Rechargeable Li–S Flow Batteries. Advanced Energy Materials 2015, 5 (24), n/a-n/a.
[53] Jia, C.; Pan, F.; Zhu, Y. G.; Huang, Q.; Lu, L.; Wang, Q., High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Science Advances 2015, 1 (10), e1500886.
[54] Chase, G. V.; Zecevic, S.; Wesley, W. T.; Uddin, J.; Sasaki, K. A.; Vincent, G. P.; Bryantsev, V.; Blanco, M.; Addison, D. D., SOLUBLE OXYGEN EVOLVING CATALYSTS FOR RECHARGEABLE METAL-AIR BATTERIES. US Patent 20,120,028,137: 2012.
[55] Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G., Charging a Li–O2 battery using a redox mediator. Nature chemistry 2013, 5 (6), 489-494.
[56] Lacey, M. J.; Frith, J. T.; Owen, J. R., A redox shuttle to facilitate oxygen reduction in the lithium air battery. Electrochemistry Communications 2013, 26, 74-76.
[57] Lim, H. D.; Song, H.; Kim, J.; Gwon, H.; Bae, Y.; Park, K. Y.; Hong, J.; Kim, H.; Kim, T.; Kim, Y. H., Superior Rechargeability and Efficiency of Lithium–Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. Angewandte Chemie International Edition 2014, 53 (15), 3926-31.
[58] Gao, X.; Chen, Y.; Johnson, L.; Bruce, P. G., Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat Mater 2016, 15 (8), 882-888.
[59] Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z.; Yin, W.; Wang, D.; Huang, Y.; Wang, J.; Wang, D., A Solution-Phase Bifunctional Catalyst for Lithium-oxygen Batteries. Journal of the American Chemical Society 2014, 136 (25), 8941-6.
[60] Imanishi, N.; Luntz, A. C.; Bruce, P., The lithium air battery: fundamentals. Springer: 2014.
[61] He, P.; Wang, Y.; Zhou, H., A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochemistry Communications 2010, 12 (12), 1686-1689.
[62] Wang, Y.; He, P.; Zhou, H., Li‐Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li‐ion and Redox Flow Batteries. Advanced Energy Materials 2012, 2 (7), 770-779.
[63] Zhu, Y. G.; Jia, C.; Yang, J.; Pan, F.; Huang, Q.; Wang, Q., Dual redox catalysts for oxygen reduction and evolution reactions: towards a redox flow Li-O2 battery. Chem Commun (Camb) 2015, 51 (46), 9451-4.
[64] Zhu, Y. G.; Wang, X.; Jia, C.; Yang, J.; Wang, Q., Redox-Mediated ORR and OER Reactions: Redox Flow Lithium Oxygen Batteries Enabled with a Pair of Soluble Redox Catalysts. ACS Catalysis 2016, 6191-6197.
[65] Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Advanced Energy Materials 2012, 2 (7), 710-721.