Monoclinic Li3V2(PO4)3 and Its Derivatives as Cathode Materials for Lithium-ion Batteries

$15.95

Monoclinic Li3V2(PO4)3 and Its Derivatives as Cathode Materials for Lithium-ion Batteries

Quanqi Chen, Xu Yan, Xinmei Zhang

As a polyanion compound with , monoclinic lithium vanadium phosphate (Li3V2(PO4)3) possesses excellent structural and thermal stability and exhibits high capacity (197 mAh/g), high operating voltage (about 3.8 V) and better cycle performance, thus Li3V2(PO4)3 has been considered as a promising cathode material for lithium-ion batteries. The physical and electrochemical properties, synthesis methods, and development of Li3V2(PO4)3 and its derivatives are also introduced in detail in this chapter.

Keywords
Lithium Vanadium Phosphate, Monoclinic, Polyanion Cathode, Thermal Stability

Published online 3/16/2017, 26 pages
Copyright © 2016 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Quanqi Chen, Xu Yan, Xinmei Zhang, ‘Monoclinic Li3V2(PO4)3 and Its Derivatives as Cathode Materials for Lithium-ion Batteries’, Materials Research Foundations, Vol. 12, pp 51-76, 2017

DOI: http://dx.doi.org/10.21741/9781945291272-3

The article was published as article 3 of the book Recent Advances in Energy Storage Materials and Devices

References
[1] S.C. Yin, H. Grondey, P. Strobel, M. Anne, L.F. Nazar. Electrochemical Property:  Structure Relationships in Monoclinic Li3-yV2(PO4)3, Journal of the American Chemical Society, 2003,125, 10402-10411. https://doi.org/10.1021/ja034565h
[2] M.Y. Saïdi, J. Barker, H. Huang, J.L. Swoyer, G. Adamson. Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries. Electrochemical and Solid-State Letters,2002, 5, A149-A151. https://doi.org/10.1149/1.1479295
[3] J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar. Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries. Chemistry of Materials, 2000, 12, 3240-3242. https://doi.org/10.1021/cm000345g
[4] H. Huang, S.C. Yin, T. Kerr, N. Taylor, L.F. Nazar, Nanostructured Composites: A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries. Advanced Materials, 2002, 14, 1525-1528. https://doi.org/10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3
[5] M. Sato, H. Ohkawa, K. Yoshida, M. Saito, K. Uematsu, K. Toda. Enhancement of discharge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature. Solid State Ionics, 2000, 135, 137-142. https://doi.org/10.1016/S0167-2738(00)00292-7
[6] X. Rui, Q. Yan, M. Skyllas-Kazacos, T.M. Lim. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. Journal of Power Sources, 2014, 258, 19-38. https://doi.org/10.1016/j.jpowsour.2014.01.126
[7] M.Y. Saïdi, J. Barker, H. Huang, J.L. Swoyer, G. Adamson. Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries. Journal of Power Sources, 2003, 119-121, 266-272. https://doi.org/10.1016/S0378-7753(03)00245-3
[8] H. Liu, G. Yang, X. Zhang, P. Gao, L. Wang, J. Fang, J. Pinto, X. Jiang. Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 11039-11047. https://doi.org/10.1039/c2jm31004j
[9] H. Tukamoto, A.R. West. Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping. Journal of The Electrochemical Society, 1997, 144, 3164-3168. https://doi.org/10.1149/1.1837976
[10] M. Nishizawa, T. Ise, H. Koshika, T. Itoh, I. Uchida. Electrochemical In-Situ Conductivity Measurements for Thin Film of Li1-xMn2O4 Spinel. Chemistry of Materials, 2000, 12, 1367-1371. https://doi.org/10.1021/cm990696z
[11] S. Beninati, L. Damen, M. Mastragostino. MW-assisted synthesis of LiFePO4 for high power applications. Journal of Power Sources, 2008, 180, 875-879. https://doi.org/10.1016/j.jpowsour.2008.02.066
[12] G. Yang, G. Wang, W. Hou. Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries. The Journal of Physical Chemistry B, 2005, 109, 11186-11196. https://doi.org/10.1021/jp050448s
[13] Y. Qiao, X. Hu, Y. Liu, Y. Huang. Li4Ti5O12 nanocrystallites for high-rate lithium-ion batteries synthesized by a rapid microwave-assisted solid-state process. Electrochimica Acta, 2012, 63, 118-123. https://doi.org/10.1016/j.electacta.2011.12.064
[14] K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan. Synthesis of inorganic solids using microwaves. Chemistry of Materials,1999, 11, 882-895. https://doi.org/10.1021/cm9803859
[15] G. Yang, H. Liu, H. Ji, Z. Chen, X. Jiang. Microwave solid-state synthesis and electrochemical properties of carbon-free Li3V2(PO4)3 as cathode materials for lithium batteries. Electrochimica Acta, 2010, 55, 2951-2957. https://doi.org/10.1016/j.electacta.2009.11.102
[16] G. Yang, H. Liu, H. Ji, Z. Chen, X. Jiang. Temperature-controlled microwave solid-state synthesis of Li3V2(PO4)3 as cathode materials for lithium batteries. Journal of Power Sources, 2010, 195, 5374-5378. https://doi.org/10.1016/j.jpowsour.2010.03.037
[17] G. Yang, H. Ji, H. Liu, B. Qian, X. Jiang. Crystal structure and electrochemical performance of Li3V2(PO4)3 synthesized by optimized microwave solid-state synthesis route. Electrochimica Acta, 2010, 55, 3669-3680. https://doi.org/10.1016/j.electacta.2010.01.114
[18] L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu. Electrode materials for lithium secondary batteries prepared by sol–gel methods. Progress in Materials Science, 2005, 50, 881-928. https://doi.org/10.1016/j.pmatsci.2005.04.002
[19] Q. Chen, J. Wang, Z. Tang, W. He, H. Shao, J. Zhang, Electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material synthesized by a sol–gel method. Electrochimica Acta,2007, 52, 5251-5257. https://doi.org/10.1016/j.electacta.2007.02.039
[20] K. Tekin, S. Karagöz, S. Bektaş. A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 2014, 40, 673-687. https://doi.org/10.1016/j.rser.2014.07.216
[21] S. Feng, R. Xu. New Materials in Hydrothermal Synthesis. Accounts of Chemical Research, 2001, 34, 239-247. https://doi.org/10.1021/ar0000105
[22] W. Shi, S. Song, H. Zhang. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chemical Society Reviews, 2013, 42, 5714-5743. https://doi.org/10.1039/c3cs60012b
[23] G. Demazeau, A. Largeteau. Hydrothermal/Solvothermal Crystal Growth: an Old but Adaptable Process. zeitschrift fur anorganische und allgemeine chemie, 2015, 641, 159-163.
[24] C. Chang, J. Xiang, X. Shi, X. Han, L. Yuan, J. Sun. Hydrothermal synthesis of carbon-coated lithium vanadium phosphate. Electrochimica Acta, 2008, 54, 623-627. https://doi.org/10.1016/j.electacta.2008.07.038
[25] H. Liu, C. Cheng, X. Huang, J. Li. Hydrothermal synthesis and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium-ion batteries. Electrochimica Acta, 2010, 55, 8461-8465. https://doi.org/10.1016/j.electacta.2010.07.049
[26] C. Sun, S. Rajasekhara, Y. Dong, J.B. Goodenough. Hydrothermal synthesis and electrochemical properties of Li3V2(PO4)3/C-based composites for lithium-ion batteries. ACS Applied Materials and Interfaces, 2011, 3, 3772-3776. https://doi.org/10.1021/am200987y
[27] F. Teng, Z.-H. Hu, X.-H. Ma, L.-C. Zhang, C.-X. Ding, Y. Yu, C.-H. Chen. Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochimica Acta, 2013, 91, 43-49. https://doi.org/10.1016/j.electacta.2012.12.090
[28] W. Duan, Z. Hu, K. Zhang, F. Cheng, Z. Tao, J. Chen. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale, 2013, 5, 6485-6490. https://doi.org/10.1039/c3nr01617j
[29] G.L. Messing, S.-C. Zhang, G.V. Jayanthi. Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society,1993, 76, 2707-2726. https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
[30] D.S. Jung, Y.N. Ko, Y.C. Kang, S.B. Park. Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries. Advanced Powder Technology, 2014, 25, 18-31. https://doi.org/10.1016/j.apt.2014.01.012
[31] Y.N. Ko, H.Y. Koo, J.H. Kim, J.H. Yi, Y.C. Kang, J.H. Lee. Characteristics of Li3V2(PO4)3/C powders prepared by ultrasonic spray pyrolysis. Journal of Power Sources,2011, 196, 6682-6687. https://doi.org/10.1016/j.jpowsour.2010.11.086
[32] Y.N. Ko, J.H. Kim, Y.J. Hong, Y.C. Kang. Electrochemical properties of nano-sized Li3V2(PO4)3/C composite powders prepared by spray pyrolysis from spray solution with chelating agent. Materials Chemistry and Physics,2011, 131, 292-296. https://doi.org/10.1016/j.matchemphys.2011.09.044
[33] C. Chen, E.M. Kelder, P.J.J.M. van der Put, J. Schoonman. Morphology control of thin LiCoO2 films fabricated using the electrostatic spray deposition (ESD) technique. Journal of Materials Chemistry,1996, 6, 765-771. https://doi.org/10.1039/jm9960600765
[34] C.H. Chen, E.M. Kelder, M.J.G. Jak, J. Schoonman. Electrostatic spray deposition of thin layers of cathode materials for lithium battery. Solid State Ionics,1996, 86-88, Part 2, 1301-1306. https://doi.org/10.1016/0167-2738(96)00305-0
[35] C.H. Chen, A.A.J. Buysman, E.M. Kelder, J. Schoonman. Fabrication of LiCoO2 thin film cathodes for rechargeable lithium battery by electrostatic spray pyrolysis. Solid State Ionics, 1995, 80, 1-4. https://doi.org/10.1016/0167-2738(95)00140-2
[36] L. Wang, L.-C. Zhang, I. Lieberwirth, H.-W. Xu, C.-H. Chen. A Li3V2(PO4)3/C thin film with high rate capability as a cathode material for lithium-ion batteries. Electrochemistry communications, 2010, 12, 52-55. https://doi.org/10.1016/j.elecom.2009.10.034
[37] S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Roziere. Electrospinning: designed architectures for energy conversion and storage devices. Energy & Environmental Science, 2011, 4, 4761-4785. https://doi.org/10.1039/c1ee02201f
[38] Z. Dong, S.J. Kennedy, Y. Wu. Electrospinning materials for energy-related applications and devices. Journal of Power Sources, 2011, 196, 4886-4904. https://doi.org/10.1016/j.jpowsour.2011.01.090
[39] O. Toprakci, L. Ji, Z. Lin, H.A.K. Toprakci, X. Zhang. Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. Journal of Power Sources, 2011, 196, 7692-7699. https://doi.org/10.1016/j.jpowsour.2011.04.031
[40] Q. Chen, X. Qiao, C. Peng, T. Zhang, Y. Wang, X. Wang. Electrochemical performance of electrospun LiFePO4/C submicrofibers composite cathode material for lithium ion batteries. Electrochimica Acta, 2012, 78, 40-48. https://doi.org/10.1016/j.electacta.2012.05.143
[41] M. Inagaki, Y. Yang, F. Kang. Carbon Nanofibers Prepared via Electrospinning. Advanced Materials, 2012, 24, 2547-2566. https://doi.org/10.1002/adma.201104940
[42] L. Ji, Z. Lin, M. Alcoutlabi, O. Toprakci, Y. Yao, G. Xu, S. Li, X. Zhang. Electrospun carbon nanofibers decorated with various amounts of electrochemically-inert nickel nanoparticles for use as high-performance energy storage materials. RSC Advances, 2012, 2, 192-198. https://doi.org/10.1039/C1RA00676B
[43] Q. Chen, T. Zhang, X. Qiao, D. Li, J. Yang. Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery. Journal of Power Sources, 2013, 234, 197-200. https://doi.org/10.1016/j.jpowsour.2013.01.164
[44] C. Wang, H. Liu, W. Yang. An integrated core-shell structured Li3V2(PO4)3@C cathode material of LIBs prepared by a momentary freeze-drying method. Journal of Materials Chemistry, 2012, 22, 5281-5285. https://doi.org/10.1039/c2jm16417e
[45] Y.Q. Qiao, X.L. Wang, Y.J. Mai, X.H. Xia, J. Zhang, C.D. Gu, J.P. Tu. Freeze-drying synthesis of Li3V2(PO4)3/C cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 536, 132-137. https://doi.org/10.1016/j.jallcom.2012.04.118
[46] C. Chang, J. Xiang, X. Shi, X. Han, L. Yuan, J. Sun. Rheological phase reaction synthesis and electrochemical performance of Li3V2(PO4)3/carbon cathode for lithium ion batteries. Electrochimica Acta, 2008, 53, 2232-2237. https://doi.org/10.1016/j.electacta.2007.09.038
[47] J.S. Huang, L. Yang, K.Y. Liu. Organic phosphoric sources for syntheses of Li3V2(PO4)3/C via improved rheological phase reaction. Materials Letters, 2012, 66,196-198. https://doi.org/10.1016/j.matlet.2011.08.097
[48] K. Nagamine, T. Honma, T. Komatsu, A fast synthesis of Li3V2(PO4)3 crystals via glass-ceramic processing and their battery performance. Journal of Power Sources, 2011, 196, 9618-9624. https://doi.org/10.1016/j.jpowsour.2011.06.094
[49] W.-f. Mao, J. Yan, H. Xie, Z.-y. Tang, Q. Xu. The interval high rate discharge behavior of Li3V2(PO4)3/C cathode based on in situ polymerization method. Electrochimica Acta, 2013, 88, 429-435. https://doi.org/10.1016/j.electacta.2012.10.078
[50] T.F. Yi, Y. Xie, M.F. Ye, L.J. Jiang, R.S. Zhu, Y.R. Zhu. Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries. Ionics, 2011, 17, 383-389. https://doi.org/10.1007/s11581-011-0550-6
[51] T.F. Yi, X.Y. Li, H. Liu, J. Shu, Y.R. Zhu, R.S. Zhu. Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery. Ionics, 2012, 18, 529-539. https://doi.org/10.1007/s11581-012-0695-y
[52] A. Bhaskar, D. Mikhailova, N. Kiziltas-Yavuz, K. Nikolowski, S. Oswald, N.N. Bramnik, H. Ehrenberg. 3d-Transition metal doped spinels as high-voltage cathode materials for rechargeable lithium-ion batteries. Progress in Solid State Chemistry, 2014, 42, 128-148. https://doi.org/10.1016/j.progsolidstchem.2014.04.007
[53] Q. Zhang, X. Li. Recent developments in the doped-Li4Ti5O12 anode materials of lithium-ion batteries for improving the rate capability. International Journal of Electrochemical Science, 2013, 8, 6449-6456.
[54] M. Ren, Z. Zhou, Y. Li, X.P. Gao, J. Yan. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Journal of Power Sources, 2006, 162, 1357-1362. https://doi.org/10.1016/j.jpowsour.2006.08.008
[55] K. Nathiya, D. Bhuvaneswari, Gangulibabu, D. Nirmala, N. Kalaiselvi. Li3MxV2-x(PO4)3/C (M=Fe, Co) composite cathodes with extended solubility limit and improved electrochemical behavior. RSC Advances, 2012, 2, 6885-6889. https://doi.org/10.1039/c2ra20998e
[56] Y. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen. Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochimica Acta, 2009, 54, 5844-5850. https://doi.org/10.1016/j.electacta.2009.05.041
[57] C. Dai, Z. Chen, H. Jin, X. Hu. Synthesis and performance of Li3(V1-xMgx)2(PO4)3 cathode materials. Journal of Power Sources, 2010, 195, 5775-5779. https://doi.org/10.1016/j.jpowsour.2010.02.081
[58] Y.G. Mateyshina, N.F. Uvarov. Electrochemical behavior of Li3-xM′xV2-yM″y(PO4)3 (M′ =K, M″=Sc, Mg+Ti)/C composite cathode material for lithium-ion batteries. Journal of Power Sources, 2011, 196, 1494-1497. https://doi.org/10.1016/j.jpowsour.2010.08.078
[59] Q. Kuang, Y. Zhao, X. An, J. Liu, Y. Dong, L. Chen. Synthesis and electrochemical properties of Co-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. Electrochimica Acta, 2010, 55, 1575-1581. https://doi.org/10.1016/j.electacta.2009.10.028
[60] M. Bini, S. Ferrari, D. Capsoni, V. Massarotti. Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochimica Acta, 2011, 56, 2648-2655. https://doi.org/10.1016/j.electacta.2010.12.011
[61] J. Yao, S. Wei, P. Zhang, C. Shen, K.-F. Aguey-Zinsou, L. Wang. Synthesis and properties of Li3V2-xCex(PO4)3/C cathode materials for Li-ion batteries. Journal of Alloys and Compounds, 2012, 532, 49-54. https://doi.org/10.1016/j.jallcom.2012.04.014
[62] W. Yuan, J. Yan, Z. Tang, O. Sha, J. Wang, W. Mao, L. Ma. Mo-doped Li3V2(PO4)3/C cathode material with high rate capability and long term cyclic stability. Electrochimica Acta, 2012, 72, 138-142. https://doi.org/10.1016/j.electacta.2012.04.030
[63] G. Bai, Y. Yang, H. Shao, Synthesis and electrochemical properties of polyhedron-shaped Li3V2-xSnx(PO4)3 as cathode material for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2013, 688, 98-102. https://doi.org/10.1016/j.jelechem.2012.08.018
[64] W.L. Wu, J. Liang, J. Yan, W.F. Mao. Synthesis of Li3NixV2-x(PO4)3/C cathode materials and their electrochemical performance for lithium ion batteries. Journal of Solid State Electrochem, 2013, 17, 2027-2033. https://doi.org/10.1007/s10008-013-2049-8
[65] L. Chen, C. Wang, H. Wang, E. Qiao, S. Wang, X. Jiang, G. Yang. Enhanced high-rate electrochemical performance of Li3V1.8Mn0.2(PO4)3 by atomic doping of Mn(III). Electrochimica Acta, 2014, 125, 338-346. https://doi.org/10.1016/j.electacta.2014.01.118
[66] L. Chen, B. Yan, Y. Xie, S. Wang, X. Jiang, G. Yang. Preparation and electrochemical properties of Li3V1.8Mn0.2(PO4)3 doped via different Mn sources. Journal of Power Sources, 2014, 261, 188-197. https://doi.org/10.1016/j.jpowsour.2014.03.061
[67] J. Xu, G. Chen, H. Zhang, W. Zheng, Y. Li. Electrochemical performance of Zr-doped Li3V2(PO4)3/C composite cathode materials for lithium ion batteries. Journal of Applied Electrochemistry, 2014, 45, 123-130. https://doi.org/10.1007/s10800-014-0782-z
[68] X. Yang, L. Jun, H. Jia, Study on structure and electrochemical performance of Tm3+-doped monoclinic Li3V2(PO4)3/C cathode material for lithium-ion batteries. Electrochimica Acta, 2014, 150, 62-67. https://doi.org/10.1016/j.electacta.2014.10.133
[69] S.M. Stankov, I. Abrahams, A. Momchilov, I. Popov, T. Stankulov, A. Trifonova. Effect of Ti-doping on the electrochemical performance of lithium vanadium(III) phosphate. Ionics, 2015, 21, 1501-1508.
https://doi.org/10.1007/s11581-014-1325-7
[70] W. Wang, J. Zhang, Y. Lin, F. Ding, Z. Chen, C. Dai. A new carbon additive compounded Li3V1.97Zn0.05(PO4)3/C cathode for plug-in hybrid electric vehicles. Electrochimica Acta, 2015, 170, 269-275. https://doi.org/10.1016/j.electacta.2015.04.163
[71] C. Deng, S. Zhang, S.Y. Yang, Y. Gao, B. Wu, L. Ma, B.L. Fu, Q. Wu, F.L. Liu. Effects of Ti and Mg Codoping on the Electrochemical Performance of Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2011, 115, 15048-15056. https://doi.org/10.1021/jp201686g
[72] S. Zhang, Q. Wu, C. Deng, F.L. Liu, M. Zhang, F.L. Meng, H. Gao, Synthesis and characterization of Ti-Mn and Ti-Fe codoped Li3V2(PO4)3 as cathode material for lithium ion batteries. Journal of Power Sources, 2012, 218, 56-64. https://doi.org/10.1016/j.jpowsour.2012.06.002
[73] C. Sun, S. Rajasekhara, Y. Dong, J.B. Goodenough. Hydrothermal Synthesis and Electrochemical Properties of Li3V2(PO4)3/C-Based Composites for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 3772-3776. https://doi.org/10.1021/am200987y
[74] Q. Kuang, Y. Zhao, Z. Liang, Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries. Journal of Power Sources, 2011, 196, 10169-10175. https://doi.org/10.1016/j.jpowsour.2011.08.044
[75] W. Yin, T. Zhang, Q. Chen, G. Li, L. Zhang. Synthesis and electrochemical performance of Li3-2xMgxV2(PO4)3/C composite cathode materials for lithium-ion batteries. Transactions of Nonferrous Metals Society of China,2015, 25,1978-1985. https://doi.org/10.1016/S1003-6326(15)63806-7
[76] Q. Chen, X. Qiao, Y. Wang, T. Zhang, C. Peng, W. Yin, L. Liu. Electrochemical performance of Li3−xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries. Journal of Power Sources, 2012, 201, 267-273. https://doi.org/10.1016/j.jpowsour.2011.10.133
[77] S. Zhong, L. Liu, J. Liu, J. Wang, J. Yang, High-rate characteristic of F-substitution cathode materials for Li–ion batteries. Solid State Communications, 2009, 149, 1679-1683. https://doi.org/10.1016/j.ssc.2009.06.019
[78] J. Yan, W. Yuan, Z.Y. Tang, H. Xie, W.F. Mao, L. Ma. Synthesis and electrochemical performance of Li3V2(PO4)3-xClx/C cathode materials for lithium-ion batteries. Journal of Power Sources, 2012, 209, 251-256. https://doi.org/10.1016/j.jpowsour.2012.02.110
[79] A. Mauger, C. Julien. Surface modifications of electrode materials for lithium-ion batteries: Status and trends. Ionics, 2014, 20, 751-787. https://doi.org/10.1007/s11581-014-1131-2
[80] L. Zhang, X.L. Wang, J.Y. Xiang, Y. Zhou, S.J. Shi, J.P. Tu. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode. Journal of Power Sources, 2010, 195, 5057-5061. https://doi.org/10.1016/j.jpowsour.2010.02.