Current Trends on Lanthanide Glasses and Materials, Chapter 1


Tunable and white light generation in lanthanide doped novel fluorophosphate glasses

M. Reza Dousti

Fluorophosphate glasses have attracted increasing attention due to their superior structural and optical properties such as mediated phonon energy, good chemical and thermal stability, wide transmittance window, and providing a long lifetime for the radiative emissions of the rare earth ions. Therefore, the aim of this chapter is to present a general portrait of the current achievements and challenges on the preparation and properties of the rare earth ions doped fluorophosphate glasses. The chapter starts by reviewing the fundamentals of glasses, presenting the advantages of fluorophosphate glasses which are followed by spectroscopic formulation of the rare earth ions. Finally, several examples of the new fluorophosphate glasses doped with rare earth ions are presented and their spectroscopic and structural properties are discussed. Co-doped lanthanide ions doped fluorophosphate glasses are nominated as good candidates as white light generating or color tunable solid state materials.

Fluorophosphate Glasses, Co-Doping, Rare Earth Ions, White Light Generation, Color Tunable, Spectroscopic Properties

Published online 1/1/2017, 44 pages


Part of Current Trends on Lanthanide Glasses and Materials

[1] E.D. Zanotto, A bright future for glass-ceramics, Am. Ceram. Soc. Bull. 89 (2010) 19–27.
[2] M.R. Dousti, R.J. Amjad, Plasmon assisted luminescence in rare earth doped glasses, in: C.D. Geddes (Ed.), Rev. Plasmon. 2015, Springer, 2016.
[3] H. Tait, ed., Five thousand years of glass, The British Museum Press, London, 1991.
[4] M.J. Plodinec, Borosilicate glasses for nuclear waste imobilisation, Glas. Tech. 41 (2000) 186–192.
[5] L.B. Starling, J.E. Stephan, Calcium phosphate microcarries and microspheres, 6,358,532 B2, 2002.
[6] J.M. Clinton, W.W. Coffeen, Low Melting glasses in the system B2O3-ZnO-CaO-P2O5., Am. Ceram. Soc. Bull. 63 (1984) 1401–1404.
[7] J. Daimer, H. Paschke, Glass sealant containing lead borate glasss and fillers of ullite and cordierite, 5,145,803, 1990.
[8] L. Koudelka, P. Mošner, Study of the structure and properties of Pb–Zn borophosphate glasses, J. Non. Cryst. Solids. 293-295 (2001) 635–641.
[9] S.E. Stokowski, R. a Saroyan, M.J. Weber, Nd-Doped laser glass spectroscopic and physical properties, Livermore, CA, 1981.
[10] H.J. Stocker, Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, Appl. Phys. Lett. 15 (1969) 55.
[11] M. Poulain, Halide glasses, J. Non. Cryst. Solids. 56 (1983) 1–14.
[12] C.M. Baldwin, R.M. Almeida, J.D. Mackenzie, Halide glasses, J. Non. Cryst. Solids. 43 (1981) 309–344.
[13] Y. Hu, J. Qiu, Z. Song, D. Zhou, Ag2O dependent up-conversion luminescence properties in Tm3+/Er3+/Yb3+ co-doped oxyfluorogermanate glasses, J. Appl. Phys. 115 (2014) 083512.
[14], Elsevier B.V. (2014). (accessed July 15, 2014).
[15] J.C. Mauro, E.D. Zanotto, Two centuries of glass research: historical trends, current status, and grand challenges for the future, Int. J. Appl. Glas. Sci. 15 (2014) 1–15.
[16] G. Poirier, F.S. Ottoboni, F.C. Cassanjes, A. Remonte, Y. Messaddeq, S.J.L. Ribeiro, Redox behavior of molybdenum and tungsten in phosphate glasses., J. Phys. Chem. B. 112 (2008) 4481–7.
[17] R.K. Brow, Review : the structure of simple phosphate glasses, J. Non. Cryst. Solids. 263-264 (2000) 1–28.
[18] L.B. Fletcher, J.J. Witcher, N. Troy, S.T. Reis, R.K. Brow, R.M. Vazquez, et al., Femtosecond laser writing of waveguides in zinc phosphate glasses, Opt. Mater. Express. 1 (2011) 845.
[19] B. Peng, T. Izumitani, Blue, green and 0.8 μm Tm3+, Ho3+ doped upconversion laser glasses, sensitized by Yb3+, Opt. Mater. (Amst). 4 (1995) 701–711.
[20] M. Nalin, S.J.L. Ribeiro, Y. Messaddeq, J. Schneider, P. Donoso, Scandium fluorophosphate glasses: a structural approach, Comptes Rendus Chim. 5 (2002) 915–920.
[21] D. Ehrt, Fluoroaluminate glasses for lasers and amplifiers, Curr. Opin. Solid State Mater. Sci. 7 (2003) 135–141.
[22] T.S. Gonçalves, R.J. Moreira Silva, M. de Oliveira Junior, C.R. Ferrari, G.Y. Poirier, H. Eckert, et al., Structure-property relations in new fluorophosphate glasses singly- and co-doped with Er3+ and Yb3+, Mater. Chem. Phys. 157 (2015) 45–55.
[23] M. Wang, L. Yi, Y. Chen, C. Yu, G. Wang, L. Hu, et al., Effect of Al(PO3)3 content on physical, chemical and optical properties of fluorophosphate glasses for 2μm application, Mater. Chem. Phys. 114 (2009) 295–299.
[24] M.J. Dejneka, The luminescence and structure of novel transparent oxyfluoride glass-ceramics, J. Non. Cryst. Solids. 239 (1998) 149–155.
[25] P. A. Tick, N.F. Borrelli, L.K. Cornelius, M. a. Newhouse, Transparent glass ceramics for 1300 nm amplifier applications, J. Appl. Phys. 78 (1995) 6367–6374.
[26] S.E. Stokowski, W.E. Martin, S.M. Yarema, Optical and lasing properties of fluorophosphate glass, J. Non. Cryst. Solids. 40 (1980) 481–487.
[27] C.R. Kesavulu, C.K. Jayasankar, White light emission in Dy3+-doped lead fluorophosphate glasses, Mater. Chem. Phys. 130 (2011) 1078–1085.
[28] C.R. Kesavulu, K.K. Kumar, N. Vijaya, K.-S. Lim, C.K. Jayasankar, Thermal, vibrational and optical properties of Eu3+-doped lead fluorophosphate glasses for red laser applications, Mater. Chem. Phys. 141 (2013) 903–911.
[29] M. De Oliveira, T. Uesbeck, T.S. Gonçalves, C.J. Magon, P.S. Pizani, A.S.S. De Camargo, et al., Network Structure and Rare-Earth Ion Local Environments in Fluoride Phosphate Photonic Glasses Studied by Solid-State NMR and Electron Paramagnetic Resonance Spectroscopies, J. Phys. Chem. C. 119 (2015) 24574–24587.
[30] R.K. Sandwick, R.J. Scheller, K.H. Mader, Production of high homogeneous fluorophosphate laser glass., Proc. Soc. Photo-Optical Instrum. Eng. 171 (1979) 161–116.
[31] J. Wysocki, M.J. Liepmann, Optical and mechanical properties of fluorophosphate glasses for, Proceeding SPIE. 1327 (1990) 238–249.
[32] F. Gan, Y. Jiang, F. Jiang, Formation and structure of Al(PO3)3-containing fluorophosphate glass, J. Non. Cryst. Solids. 52 (1982) 263–273.
[33] B. Karmakar, K. Annapurna, Blue, green and red upconversions in Ho2O3-doped fluorophosphate glasses, J. Non. Cryst. Solids. 353 (2007) 1377–1382.
[34] S. Stevic, R. Aleksic, N. Backovi, Influence of Fluorine on Thermal Properties of Fluorophosphate Glasses, J. Am. Ceram. Soc. 70 (1987) 264–265.
[35] S. Liu, A. Lu, Physical and spectroscopic properties of Yb3+-doped fluorophosphate laser glasses, Laser Chem. 2008 (2008) 1–6.
[36] M. Liao, Z. Duan, L. Hu, Y. Fang, L. Wen, Spectroscopic properties of Er3+/Yb3+ codoped fluorophosphate glasses, J. Lumin. 126 (2007) 139–144.
[37] M. Liao, H. Sun, L. Wen, Y. Fang, L. Hu, Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses, Mater. Chem. Phys. 98 (2006) 154–158.
[38] N. Rigout, J.L. Adam, J. Lucas, Chemical and physical compatibilities of fluoride and fluorophosphate glasses, J. Non. Cryst. Solids. 184 (1995) 319–323.
[39] T. Izumitani, Y. Asahara, Cause of low damage threshold of fluorophosphate glass, AGARD Lect. Ser. (1980) 172–179.
[40] K. Binnemans, R. Van Deun, C. Görller-Walrand, J.L. Adam, Optical properties of Nd3+-doped fluorophosphate glasses, J. Alloys Compd. 275-277 (1998) 455–460.
[41] C.W. Thiel, Y. Sun, R.L. Cone, Photonic materials and devices progress in relating rare-earth ion 4f and 5d energy levels to host bands in optical materials for hole burning, quantum information and phosphors, J. Mod. Opt. 49 (2002) 2399–2411.
[42] A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, et al., Rare-earth ion doped TeO2 and GeO2 glasses as laser materials, Prog. Mater. Sci. 57 (2012) 1426–1491.
[43] P.C. Becker, N.A. Olsson, J.R. Simpson, Erbium-doped fiber amplifiers, Academic Press, San Diego, 1999.
[44] K. Maheshvaran, K. Marimuthu, Concentration dependent Eu3+ doped boro-tellurite glasses-Structural and optical investigations, J. Lumin. 132 (2012) 2259–2267.
[45] S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, L. Hu, Concentration quenching in erbium-doped tellurite glasses, J. Lumin. 117 (2006) 39–45.
[46] H. Zheng, D. Gao, Z. Fu, E. Wang, Y. Lei, Y. Tuan, et al., Fluorescence enhancement of Ln3+ doped nanoparticles, J. Lumin. 131 (2011) 423–428.
[47] E. Snitzer, Optical maser action of Nd3+ in a barium crown glass, Phys. Rev. Lett. 7 (1961).
[48] C.J. Koester, E. Snitzer, Amplification in a Fiber Laser, Appl. Opt. 3 (1964) 1182.
[49] K.C. Kao, Dielectric-fibre surface waveguides for optical frequencies, Proceeding Inst Electr Eng-London. 113 (1966) 1151.
[50] J.N. Sandoe, P.H. Sarkies, S. Parke, Variation of Er3+ cross-section for stimulated emission with glass composition., J. Phys. D. Appl. Phys. 5 (1972) 1788.
[51] J. Stone, C.A. Burrus, Neodymium-doped silica lasers in end-pumped fiber geometry., Appl. Phys. Lett. 23 (1973) 388–9.
[52] R.J. Mears, L. Reekie, S.B. Poole, D.N. Payne, Low-threshold tunable CW and Q-switched fibre laser operating at 1.55µm, Electron. Lett. 22 (1986) 159–160.
[53] F. Auzel, Upconversion processes in coupled ion systems, J. Lumin. 45 (1990) 341–345.
[54] D.L. Dexter, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys. 21 (1953) 836–851.
[55] A.A. Kaplyanskii, R.M. MacFarlane, eds., Spectroscopy of Solids containing Rare-Earth Ion, North-Holland, Amsterdam, 1987.
[56] B.R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev. 127 (1962) 750–761.
[57] G.S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37 (1962) 511–520.
[58] B.M. Walsh, Judd-ofelt theory: principles and practices, in: Adv. Spectrocopy Lasers Sens., 2006: pp. 403–433.
[59] M.R. Dousti, G.Y. Poirier, A.S.S. de Camargo, Structural and spectroscopic characteristics of Eu3+-doped tungsten phosphate glasses, Opt. Mater. (Amst). 45 (2015) 185–190.
[60] X. Li, B. Chen, R. Shen, H. Zhong, L. Cheng, J. Sun, et al., Fluorescence quenching of 5DJ (J=1, 2 and 3) levels and Judd–Ofelt analysis of Eu3+ in NaGdTiO4 phosphors, J. Phys. D. Appl. Phys. 44 (2011) 335403.
[61] H.U. Rahman, Optical intensities of trivalent erbium in various host lattices, J. Phys. C Solid State Phys. 5 (1972) 306–315.
[62] W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Energy level structure and transition probabilities in the spectra of the trivalent lanthandes in LaF3, 1977.
[63] J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, Z. Jiang, Investigation on nonradiative decay of 4I13/2 – 4I15/2 transition of Er3+ -doped oxide glasses, J. Lumin. 106 (2004) 9–14.
[64] Y. Chen, Y. Huang, M. Huang, R. Chen, Z. Luo, Spectroscopic properties of Er3+ ions in bismuth borate glasses, Opt. Mater. (Amst). 25 (2004) 271–278.
[65] P. Nandi, G. Jose, Spectroscopic properties of Er3+ doped phospho-tellurite glasses, Phys. B Condens. Matter. 381 (2006) 66–72.
[66] M.D. Shinn, W. a. Sibley, M.G. Drexhage, R.N. Brown, Optical transitions of Er3+ ions in fluorozirconate glass, Phys. Rev. B. 27 (1983) 6635–6648.
[67] D.K. Sardar, J.B. Gruber, B. Zandi, J.A. Hutchinson, C. Ward Trussell, Judd-Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+, Yb3+, J. Appl. Phys. 93 (2003) 2041–2046.
[68] R. Van Deun, K. Binnemans, C. Görller-Walrand, J.L. Adam, Judd–Ofelt intensity parameters of trivalent lanthanide ions in a NaPO3–BaF2 based fluorophosphate glass, J. Alloys Compd. 283 (1999) 59–65.
[69] E.L. Raaben, A.K. Przhevuskii, S.G. Lunter, Probabilities of the optical transitions of neodymium in a fluorophosphate glass, J. Appl. Spectrosc. 24 (1976) 179–183.
[70] O. Deutschbein, M. Faulstich, W. Jahn, G. Krolla, N. Neuroth, Glasses with a large laser effect : Nd-phosphate and, Appl. Opt. 17 (1978) 2228–2232.
[71] S. Buddhudu, Characterization of Fluorophosphate Optical Glasses, 460 (1991) 454–460.
[72] J. Chrysochoos, B. Kumar, S.P. Sinha, Time-resolved luminescence and decay characteristics of Gd3+ in fluoroarsenate and fluorophosphate glasses, J. Less Common Met. 126 (1986) 195–201.
[73] M. Sreenivasulu, A.S. Rao, Absorption and emission spectra of Pr3+-doped mixed alkali fluorophosphate optical glasses, (2001) 737–740.
[74] S. Tanabe, K. Hirao, N. Soga, Local structure of rare-earth ions in fluorophosphate glasses by phonon sideband and mössbauer spectroscopy, J. Non. Cryst. Solids. 142 (1992) 148–154.
[75] R.P.R.D. Nardi, C.E. Braz, A.S.S. de Camargo, S.J.L. Ribeiro, L.A. Rocha, F.C. Cassanjes, et al., Effect of lead fluoride incorporation on the structure and luminescence properties of tungsten sodium phosphate glasses, Opt. Mater. 49 (2015) 249–254.
[76] A.V.R. Reddy, T. Balaji, S. Buddhudu, Absorption and photoluminescence spectra of Tm3+-doped fluorophosphate glasses, 1992.
[77] G. Özen, J.P. Denis, P. Goldner, X. Wu, M. Genotelle, F. Pellé, Enhanced Tm3+ blue emission in Tm, Yb, co-doped fluorophosphate glasses due to back energy transfer processes, Appl. Phys. Lett. 62 (1993) 928.
[78] H. Ono, K. Nakagawa, M. Yamada, S. Sudo, Er3+-doped fluorophosphate glass fibre amplifier for WDM systems, Electron. Lett. 32 (1996) 1586–1587.
[79] Z. Li-Yan, H. Li-Li, Evaluation of broadband spectral properties of erbium-doped aluminium fluorophosphate glass, Chinese Phys. Lett. 20 (2003) 1836–1837.
[80] H. Sun, L. Zhang, S. Xu, S. Dai, J. Zhang, L. Hu, et al., Structure and thermal stability of novel fluorophosphate glasses, J. Alloys Compd. 391 (2005) 151–155.
[81] R. Zheng, Z. Wang, P. Lv, Y. Yuan, Y. Zhang, J. Zheng, et al., Novel synthesis of low hydroxyl content Yb3+-doped fluorophosphate glasses with long fluorescence lifetimes, J. Am. Ceram. Soc. 98 (2015) 861–866.
[82] L. Zhang, Y. Leng, J. Zhang, L. Hu, Yb3+-doped fluorophosphate glass with high cross section and lifetime, J. Mater. Sci. Technol. 26 (2010) 921–924.
[83] J. Qiu, K. Tanaka, N. Sugimoto, K. Hirao, Faraday effect in Tb3+-containing borate, fluoride and fluorophosphate glasses, J. Non. Cryst. Solids. 213-214 (1997) 193–198.
[84] T. Asahara, YoshiyukiIzumitani, Faraday Rotation Glass, 1983.
[85] T.B. De Queiroz, M.B.S. Botelho, T.S. Gonçalves, M.R. Dousti, A.S.S. De Camargo, New fluorophosphate glasses co-doped with Eu3+ and Tb3+ as candidates for generating tunable visible light, J. Alloys Compd. 647 (2015) 315–321.
[86] B. Karmakar, P. Kundu, R. Dwivedi, IR spectra and their application for evaluating physical properties of fluorophosphate glasses, J. Non. Cryst. Solids. 289 (2001) 155–162.
[87] G.J. Exarhos, P.J. Miller, W.M. Risen, Interionic vibrations and glass transitions in ionic oxide metaphosphate glasses, J. Chem. Phys. 60 (1974) 4145–4155.
[88] D.E.C. Corbridge, E.J. Lowe, The infra-red spectra of some inorganic phosphorus compounds, L. Chem. Soc. (1954) 493–502.
[89] K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, 4th ed., Wiley, New York, 1986.
[90] R.K. Brow, Z.A. Osborne, R.J. Kirkpatrick, Multinuclear MAS NMR study of the short-range structure of fluorophosphate glass, J. Mater. Res. 7 (1992) 1892–1899.
[91] T. Djouama, M. Poulain, B. Bureau, R. Lebullenger, Structural investigation of fluorophosphate glasses by 19F, 31P MAS-NMR and IR spectroscopy, J. Non. Cryst. Solids. 414 (2015) 16–20.
[92] B. Karmakar, P. Kundu, R.N. Dwivedi, UV transparency and structure of fluorophosphate glasses, Mater. Lett. 57 (2002) 953–958.
[93] J.H. Choi, F.G. Shi, A. Margaryan, Refractive index and low dispersion Properties of new fluorophosphate glasses highly doped with rare-earth ions, J. Mater. Res. 20 (2011) 264–270.
[94] G. Poirier, C.B. De Araújo, Y. Messaddeq, S.J.L. Ribeiro, M. Poulain, Tungstate fluorophosphate glasses as optical limiters, J. Appl. Phys. 91 (2002) 10221–10223.
[95] G.G. Poirier, V. a. Jerez, C.B. de Araújo, Y. Messaddeq, S.J.L. Ribeiro, M. Poulain, et al., Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphate glasses, J. Appl. Phys. 93 (2003) 1493.
[96] J.H. Choi, F.G. Shi, A. Margaryan, A. Margaryan, W. van der Veer, Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers, J. Alloys Compd. 450 (2008) 540–545.
[97] S.S. Babu, P. Babu, C.K. Jayasankar, T. Tröster, W. Sievers, G. Wortmann, Optical properties of Dy3+-doped phosphate and fluorophosphate glasses, Opt. Mater. 31 (2009) 624–631.
[98] M.R. Dousti, Origins of the broadening in 1.5 μm emission of Er3+-doped glasses, J. Mol. Struct. 1100 (2015) 415–420.
[99] N. Jaba, H. Ben Mansour, A. Kanoun, A. Brenier, B. Champagnon, Spectral broadening and luminescence quenching of 1.53μm emission in Er3+-doped zinc tellurite glass, J. Lumin. 129 (2009) 270–276.
[100] R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, X. Liu, Temporal full-colour tuning through non-steady-state upconversion, Nat Nanotechnol. 10 (2015) 237–242.
[101] C. Ming, F. Song, Y. Qin, X. Ren, L. An, M (Tm3+, Tb3+, Ho3+, Dy3+, Mn2+)-doped transparent fluorophosphate glasses for white light-emitting-diodes, Opt. Commun. 321 (2014) 195–197.
[102] J.F.M. dos Santos, I. a. a. Terra, N.G.C. Astrath, F.B. Guimarães, M.L. Baesso, L. a. O. Nunes, et al., Mechanisms of optical losses in the 5D4 and 5D3 levels in Tb3+ doped low silica calcium aluminosilicate glasses, J. Appl. Phys. 117 (2015) 053102.
[103] N. Vijaya, K. Upendra Kumar, C.K. Jayasankar, Dy3+-doped zinc fluorophosphate glasses for white luminescence applications, Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 113 (2013) 145–153.