Contemporary Dielectric Materials, Chapter 6


Bonding in La0.9Zn0.1FeO3 multiferroic material

G.Gowri, R.Saravanan , R.Pradeepa, M.Raja Rajeswari, K.Abirami

In this work, zinc doped LaFeO3 multiferroic (La0.9Zn0.1FeO3) has been prepared by the chemical co-precipitation method. The prepared sample has been characterized using powder X-ray diffraction, transmission electron microscope, UV-Visible spectrometer and vibration sample magnetometer respectively. The structural analysis has been done on the powder X-ray diffraction data of the sample using the powder profile refinement technique and the results obtained from the refinement process have been used to analyse the electron density distribution and also bonding nature between the neighbouring atoms in the unit cell of the prepared sample using the Maximum Entropy Method (MEM). The average particle size is determined using TEM images. The optical band gap energy is estimated using UV-Visible absorption spectrum. The magnetic parameters are extracted from the hysteresis loop recorded using a vibration sample magnetometer (VSM).

LaFeO3, X-Ray Diffraction, Maximum Entropy Method, Transmission Electron Microscope, Coercivity

Published online 1/1/2017, 16 pages


Part of Contemporary Dielectric Materials

[1] T. Hibino, S. Wang, S. Kakimoto, M. Sano, One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode, Solid State Ionics. 127 (2000) 89–98.
[2] A. Moser, C.T. Rettner, M.E. Best, E.E. Fullerton, D. Weller, M. Parker, M.F. Doerner, Writing and detecting bits at 100 Gbit/in2 in longitudinal magnetic recording media, IEEE Trans. Magn. 36 (2000) 2137–2139.
[3] S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Yu Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher, Giant Magneto-Resistance Devices, J. Appl. Phys. 85 (1999) 5828–5833.
[4] Y.-H. Lee, J.-M. Wu, Epitaxial growth of LaFeO3 thin films by RF magnetron sputtering, J. Cryst. Growth. 263 (2004) 436-441.
[5] P.M. Woodward, Octahedral tilting in perovskites: I Geometrical considerations, Acta Crystallogr. B53 (1997) 32-43.
[6] P.M. Woodward, Octahedral tilting in perovskites: II Structure stabilizing forces, Acta Crystallogr. B53 (1997) 44-66.
[7] J.-M. Liu, Q.C. Li, X.S. Gao, Y. Yang, X.H. Zhou, X.Y. Chen, et al, Order coupling in ferroelectromagnets as simulated by a Monte Carlo method, Phys. Rev. B, 66, (2002) 054416–054426.
[8] N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B, 104 (2000) 6694–6709.
[9] G.R. Hearne, M.P. Pasternak, Electronic structure and magnetic properties of LaFeO3 at high pressure, Phys. Rev. B, 51, (1995) 11495–11.
[10] S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, P.K. Chakrabarti, Multiferroic behavior of Lanthanum orthoferrite (LaFeO3), Mater. Lett. 64 (2010) 415-418.
[11] Tang P, Tong Y, Chen H, Cao F, Pan G, Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photo catalyst, Curr. Appl. Phys. 13, (2013) 340–343.
[12] Farhadi S, Momeni Z, Taherimehr M, Rapid synthesis of perovskite-type LaFeO3 nanoparticles by microwave-assisted decomposition of bimetallic La[Fe(CN)6] 5H2O compound, J. Alloy Compd. 471 (2009) 15–18.
[13] Ding JLX, Shu H, Xie J, Zhang H, Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst, Mater. Sci. Eng. B. 171 (2010) 31–34.
[14] S. Acharya, P.K. Chakrabarti, Some interesting observations on the magnetic and electric properties of Al doped lanthanum orthoferrite ( La0.5Al0.5FeO3), Solid State Commun. 150, (2010) 1234-1237.
[15] Thirumalairajan S, Girija K, Ganesh I, Mangalaraj D, Viswanathan C, Balamurugan A, Ponpandian N, Controlled synthesis of perovskite LaFeO3 microsphere composed of nanoparticles via self-assembly process and their associated photo catalytic activity, Chem. Eng. J. 209 (2012) 420–428.
[16] Zheng W, Liu R, Peng D, Meng G, Hydrothermal synthesis of LaFeO3 under carbonate-containing medium , Mater. Lett. 43 (2000) 19–22.
[17] Ji K, Dai H, Deng J, Song L, Xie S, Han W, Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion, J. Solid State Chem. 199 (2013) 164–170.
[18] K..Mukhopadhyay, A.S.Mahapatra, P.K.Chakrabarti, Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1-x)ZnxFeO3, x=0.10, and 0.30), J. Magn. Magn. Mater. 329 (2013) 133–141.
[19] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Crystallogr. 2 (1969) 65-71.
[20] Petřiček, V., Dušek, & M., Palatinus, L. (2006). JANA 2006, the crystallographic computing system. Praha, Czech Republic, Academy of Sciences of the Czech Republic.
[21] M. M. Wolfson, Introduction to X-ray Crystallography. Cambridge University Press, London, 1970.
[22] D.M.Collins, Electron density images from imperfect data by iterative entropy maximization, Nature. 298 (1982) 49-51.
[23] F.Izumi, R.A.Dilanien, PRIMA, for the maximum entropy method advanced materials laboratory, Japan (2004).
[24] K.Momma and F.Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J.Appl. Crystallogr. 41 (2008) 653.
[25] J.Tauc, R.Grigorvici, A.Vancu, Optical properties and electronic structure of amorphous germanium, Physica status solidi 15, 627-637 (1966).
[26] Roberto Köferstein, Lothar Jäger, Stefan G. Ebbinghaus, Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics, Solid State Ionics, 249-250 (2013) 1-5.