Contemporary Dielectric Materials, Chapter 3


Structural, optical and magnetic properties of Ga2-xFexO3

M. Charles Robert, S. Sasikumar, S. Saravanakumar, R. Saravanan

The present work focuses on the multiferroic gallium iron oxide compound which could be a good candidate for magnetic storage applications. In this study, the poly crystalline samples of Ga2-xFexO3 (x=0.8, 1.0, 1.2) were synthesized using the standard solid state reaction method. The prepared samples were characterized by powder X- ray diffraction and the powder profile pattern was studied using the Rietveld refinement technique. The average crystallite sizes were evaluated using the Debye Scherrer’s formula and found to be in the range of nanometers. The magnetic properties were studied by using the vibrating sample magnetometer (VSM). The surface morphologies were analyzed by scanning electron microscopy (SEM). The elements present in the sample were verified by using EDS spectra. The band gap energy of Ga2-xFexO3 was evaluated using UV-Visible data.

Rietveld Refinement, Vibrating Sample Magnetometer, Scanning Electron Microscopy

Published online 1/1/2017, 10 pages


Part of Contemporary Dielectric Materials

[1] K. Kelm, W. Mader, Z. Anorg. Allg. Chem, Synthesis and structural analysis of epsilon-Fe2O3, 631 (2005) 2383-2389.
[2] M. E. Lines and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977).
[3] M. Bibes and A. Barthelemy, Multiferroics: Towards a magnetoelectric memory, Nature Mater. 7 (2008) 425-426.
[4] R. Ramesh and N. A. Spaldin, Multiferroics: progress and prospects in thin films Nature mater. 6 (2007) 21-29.
[5] E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. M. Triscone, and P. Ghosez, Nature (London) 452, 723 (2008).
[6] M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert, Tunnel junctions with multiferroic barriers. Nature Mater, 6(4) 2007 296–302.
[7] M. Bibes, Multiferroics BA. Towards a magnetoelectric memory. Nature Mater 7(6) 2008 425–426.
[8] V.E. Wood, A.E. Austin, Possible applications for magnetoelectric materials. Int J Magn 5(4) 19743 03–15.
[9] H. Schmid, Multi-ferroic magnetoelectrics, Ferroelectrics 162 (1994) 317–338.
[10] J.F. Scott, Data storage: Multiferroic memories, Nat. Mater. 6 (2007) 256–257.
[11] G.A. Prinz, Magnetoelectronics, Science 282 (1998) 1660–1663.
[12] A. Roy, R. Gupta, A. Garg, Magnetoelectric Memories: A Review, Adv. Cond. Mat. Phys. Article ID 926290 (2012),
[13] H. Schmid, On the possibility of ferromagnetic, antiferromagnetic, ferroelectric and ferroelastic domain reorientations in magnetic and electric fields, Ferroelectrics 221 (1999) 9–17.
[14] W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials, Nature 442 (2006) 759–765.
[15] J.P. Remeika, GaFeO3: A Ferromagnetic-Piezoelectric Compound, J. Appl. Phys. 31 (1960) S263.
[16] G.T. Rado, Observation and Possible Mechanisms of Magnetoelectric Effects in a Ferromagnet, Phys. Rev. Lett. 13 (1964) 335.
[17] A. Shireen, R. Saha, P. Mandal, A. Sundaresan, C.N.R. Rao, Multiferroic and magnetodielectric properties of the Al1-xGaxFeO3 family of oxide, J. Mater. Chem. 21 (2011) 57-59.
[18] L.F. Cotica, I.A. Santos, M. Venet, D. Garcia, J.A. Eiras, A.A. Coelho, Dielectric and magnetic coupling in lead-free FeAlO3 magnetoelectric compound Solid State, Commun. 147 (2008) 123-125.
[19] R.B. Frankel, N.A. Blum, S. Foner, A.J.Freeman, M. Schieber, Ferrimagnetic structure of magnetoelectric Ga2-xFexO3, Phys. Rev. Lett. 15 (1965) 958-960.
[20] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32 (1976) 751-767.
[21] H.M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic, J. Appl. Crystallogr. 2 (1969) 65.
[22] V. Petricek, M. Dusek and L. Palatinus, (2006) Jana, The crystallographic computing system (Institute of Physics), Praha, Czech Republic.
[23] J.I. Pancove, (1971). Optical processes in semiconductors. Englewood Cliffs, NJ, USA: Prentice Hall.