Novel approach to damage detection in laminated structures: modal damping as a damage indicator

Novel approach to damage detection in laminated structures: modal damping as a damage indicator

Shabnam Kiasat

download PDF

Abstract. This paper provides a general overview of the author’s Ph.D. research. It emphasizes the criticality of damage detection in composite materials, focusing on interlaminar delamination. It introduces vibration-based non-destructive testing (NDT) techniques and modal damping analysis as a novel damage indicator and highlights their real-time capabilities and sensitivity to subtle defects. Numerical modeling benefits and challenges in understanding modal damping behavior are discussed. The review covers research on modal damping modeling, its application in detecting interlaminar delamination, and composite defect simulation. The findings of the presented study provide insights into delamination behavior and its impact on structural integrity. Overall, this work highlights the effectiveness of vibration-based NDT and numerical modeling for enhanced structural health monitoring and material safety.

Modal Damping, Delamination, SHM, Damage Detection, Viscoelasticity, Contact Damping

Published online 6/1/2024, 7 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Shabnam Kiasat, Novel approach to damage detection in laminated structures: modal damping as a damage indicator, Materials Research Proceedings, Vol. 42, pp 31-37, 2024


The article was published as article 8 of the book Aerospace Science and Engineering

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] A. Vedernikov, A. Safonov, F. Tucci, P. Carlone, I. Akhatov, Pultruded materials and structures: A review, Journal of Composite Materials. 54 (2000) 4081–4117.
[2] G. I. Zagainov, G. E. Lozino-Lozinsky, Composite Materials in Aerospace Design, Springer Science & Business Media, 1996.
[3] D. K. Rajak, D. D. Pagar, A. Behera, P. L. Menezes, Role of composite materials in automotive sector: potential applications, Advances in Engine Tribology. (2000) 193-217.
[4] L. Lui, B. Z. Zhang, D. F. Wang, & Z. J. Wu, Effects of cure cycles on void content and mechanical properties of composite laminates, Composite Structures. 73 (2006) 303-309.
[5] E. Benvenuti, O. Vitarelli, A. Tralli, Delamination of FRP-reinforced concrete by means of an extended finite element formulation, Composites Part B: Engineering. 43 (2012) 3258–3269.
[6] S. Hühne, J. Reinoso, E. Jansen, R. Rolfes, A two-way loose coupling procedure for investigating the buckling and damage behavior of stiffened composite panels, Composite Structures. 136 (2016) 513–525.
[7] Allix, O., & Ladevèze, P., Interlaminar interface modeling for the prediction of delamination, Composite Structures. 22 (1992) 235–242.
[8] M. Saeedifar, H. Hosseini Toudeshky, The effect of interlaminar and intralaminar damage mechanisms on the quasi-static indentation strength of composite laminates, Applied Composite Materials. 30 (2023) 871–886.
[9] S. A. Ramu, V. T. Johnson, Damage assessment of composite structures—a fuzzy logic integrated neural network approach, Computers & Structures. 57 (1995) 491–502.
[10] A. M. Amaro, P. N. B. Reis, M. F. S. F. De Moura, J. B. Santos, Damage detection on laminated composite materials using several NDT techniques, Insight-Non-Destructive Testing and Condition Monitoring. 54 (2012) 14-20.
[11] P.E. Mix, Introduction to Nondestructive Testing: A Training Guide, 2nd ed., John Wiley & Sons, 2005.
[12] P. Duchene, S. Chaki, A. Ayadi, P. Krawczak, A review of non-destructive techniques used for mechanical damage assessment in polymer composites, Journal of Materials Science. 53 (2018) 7915-7938.
[13] A. S. Nobari, M. H. F. Aliabadi, Vibration-based Techniques for Damage Detection and Localization in Engineering Structures, World Scientific, 2018.
[14] M. Khazaee, A.S. Nobari, M.H.F. Aliabadi, Experimental Investigation of Delamination Effects on Modal Damping of a CFRP Laminate, Using a Statistical Rationalization Approach, in: Vibration-Based Techniques for Damage Detection and Localization in Engineering Structures, World Scientific, 2018, pp. 75-103.
[15] A. Paolozzi, I. Peroni, Identification of models of a composite plate for the purpose of damage detection, AEROTEC. MISSILI SPAZIO. 6 7(1988) 119-129.
[16] A. Paolozzi, I. Peroni, Detection of debonding damage in a composite plate through natural frequency variations, Journal of Reinforced Plastics and Composites. 9 (1990) 369-389.
[17] A. K. Pandey, M. Biswas, M. M. Samman, Damage detection from changes in curvature mode shapes, Journal of Sound and Vibration. 145(1991) 321-332.
[18] P. Qiao, K. Lu, W. Lestari, J. Wang, Curvature mode shape-based damage detection in composite laminated plates, Composite Structures. 80(2007) 409-428.
[19] B. Nanda, D. Maity, D. K. Maiti, Vibration-based structural damage detection technique using particle swarm optimization with incremental swarm size, International Journal Aeronautical and Space Sciences. 13(2012) 323-331.
[20] T. R. Jebieshia, D. Maiti, Vibration characteristics and damage detection of composite structures with anisotropic damage using unified particle swarm optimization technique. In: Proceedings of the American Society for Composites, 13th Technical Conference, East Lansing, MI, 2015, pp. 28–30.
[21] D. A. Pereira, T. A. M. Guimarães, H. B. Resende, D. A. Rade, Numerical and experimental analyses of modal frequency and damping in tow-steered CFRP laminates, Composite Structures. 244 (2020) 112-190.
[22] S. E. Hamdi, Z. M. Sbartaï, S. M. Elachachi, Performance assessment of modal parameters identification methods for timber structures evaluation: Numerical modeling and case study, Wood Science and Technology. 55 (2021) 1593-1618.
[23] S. Adhikari, Structural Dynamic Analysis with Generalized Damping Models: Analysis, John Wiley & Sons, 2013. 10.1142/9781786344977_0001
[24] E. Carrera, M. Cinefra, M. Petrolo, E. Zappino, Finite Element Analysis of Structures Through Unified Formulation, John Wiley & Sons, 2014.
[25] R. E. Spears, S. R. Jensen, Approach for selection of Rayleigh damping parameters used for time history analysis, The Electronic Journal of Geotechnical Engineering. 6 (2012) 061801.
[26] Sh. Kiasat, M. Filippi, A. S. Nobari, E. Carrera, Layer-wise dynamic analysis of a beam with global and local viscoelastic contributions using an FE/Laplace transform approach, Acta Mechanica. 233 (2022) 4747-4761.
[27] C. W. Bert, Material damping: An introductory review of mathematical models, measures, and experimental techniques, Journal of Sound and Vibration. 29 (1973) 129-153.
[28] J. K. Cullum, R. A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations, SIAM, 2002.
[29] K. J. Bathe, The subspace iteration method–Revisited, Computers & Structures 126 (2013) 177-183.
[30] X. Y. Li, S. S. Law, Identification of structural damping in time domain, Journal of Sound and Vibration. 328 (2009) 71-84.
[31] M. Kurt, Identification, Reduced Order Modeling and Model Updating of Nonlinear Mechanical Systems, University of Illinois at Urbana-Champaign, 2014.
[32] G. Kerschen, M. Maxime, J. C. Golinval, C. Stephan, Nonlinear modal analysis of a full-scale aircraft, Journal of Aircraft, 5(2013) 1409–1419.
[33] G. A. Papagiannopoulos, D. E. Beskos, On a modal damping identification model of building structures, Archive of Applied Mechanics. 76 (2006) 443-463.
[34] K.-N. Antin, A. Laukkanen, T. Andersson, D. Smyl, P. Vilaça, A multiscale modelling approach for estimating the effect of defects in unidirectional carbon fiber reinforced polymer composites, Materials. 12 (2019) 1885.
[35] T. A. Sebaey, G. Catalanotti, N. P. O’Dowd, A microscale integrated approach to measure and model fiber misalignment in fiber-reinforced composites, Composites Science and Technology. 183 (2019) 107793.
[36] Y. Fu, X. Yao, X. Gao, Micro-mesoscopic prediction of void defect in 3D braided composites, Composites Part A: Applied Science and Manufacturing. 147(2021) 106450.
[37] A. Yaghoobi, M. G. Chorzepa, S. S. Kim, S. A. Durham, Mesoscale fracture analysis of multiphase cementitious composites using peridynamics, Materials. 10 (2017) 162.
[38] M. Zaccariotto, G. Sarego, D. Dipasquale, et. al. Discontinuous mechanical problems studied with an aerodynamics-based approach, Aerotecnica Missili & Spazio. 96 (2017) 44-55.
[39] Y. Yu, J. Ye, Y. Wang, B. Zhang, G. Qi, A mesoscale ultrasonic attenuation finite element model of composites with random-distributed voids, Composites Science and Technology. 89 (2013) 44-51.
[40] S. Kiasat, A. S. Nobari, M. Filippi, E. Carrera, Characterization of viscoelastic damping mechanism in a delaminated structure, Mechanical Systems and Signal Processing. (Manuscript submitted for publication).
[41] S. A. Ponnusami, S. Turteltaub, S. van der Zwaag, Cohesive-zone modelling of crack nucleation and propagation in particulate composites, Engineering Fracture Mechanics 149 (2015) 170-190.