Draping of biaxial non-crimp fabric on hemispherical shape

Draping of biaxial non-crimp fabric on hemispherical shape

ZHENG Ruochen, NAOUAR Naim, SCHÄFER Bastian, PLATZER Auriane, COLMARS Julien, KÄRGER Luise, BOISSE Philippe

download PDF

Abstract. The experiment and simulation of biaxial non-crimp fabric draping process is investigated. The finite element model is formulated employing a mesoscopic approach, wherein each individual fiber yarn and stitch is treated as a continuous medium, modeled separately for a more nuanced representation. The hemispherical punch shape for the draping is selected as it is the most commonly used academic shape with a rather simple double-curved geometry. The deformed shape, material draw-in and local shear angle between the experimental and numerical results are compared and discussed.

Biaxial NCF, Hyperelastic, Meso-Scale Model, Composite Forming

Published online 4/24/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: ZHENG Ruochen, NAOUAR Naim, SCHÄFER Bastian, PLATZER Auriane, COLMARS Julien, KÄRGER Luise, BOISSE Philippe, Draping of biaxial non-crimp fabric on hemispherical shape, Materials Research Proceedings, Vol. 41, pp 623-630, 2024

DOI: https://doi.org/10.21741/9781644903131-69

The article was published as article 69 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] S. Lomov, 4 – understanding and modelling the effect of stitching on the geometry of non-crimp fabrics, in: S. V. Lomov (Eds.), Non-Crimp Fabric Composites, Woodhead Publishing Series in Composites Science and Engineering, Woodhead Publishing, 2011, pp. 84–102. https://doi.org/10.1533/9780857092533.1.84
[2] S. Advani, E. Sozer, L. Mishnaevsky Jr, Pocess modeling in composite manufacturing, pplied Mechanics Reviews. 56 (2003) B69-B70. https://doi.org/10.1115/1.1584418
[3] S. Sihn, R. Y. Kim, K. Kawabe, S. W. Tsai, Eerimental studies of thin-ply laminated composites, Composites Science and Technology. 67 (2007) 996-1008. https://doi.org/10.1016/j.compscitech.2006.06.008
[4] A. Schnabel, T. Gries, Production of non-crimp fabrics for composites, in: Stepan V. Lomov (Eds.), Non-Crimp Fabric Composites, Woodhead Publishing, 2011, pp. 3-41. https://doi.org/10.1533/9780857092533.1.3
[5] M. Ashir, L. Hahn, A. Kluge, A. Nocke, C. Cherif, Development of innovative adaptive 3d fiber reinforced plastics based on shape memory alloys, Composites Science and Technolog. 126 (2016) 43-51. https://doi.org/10.1016/j.compscitech.2016.02.009
[6] P. Boisse, N. Hamila, E. Vidal-Sallé, F. Dumont, Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Composites Science and Technology, 2011, 71 (5), pp.683. https://doi.org/10.1016/j.compscitech.2011.01.011
[7] P. Boisse, B. Zouari, A. Gasser, A mesoscopic approach for the simulation of woven fibre composite forming, Composites Science and Technolog. 65 (2005) 429-436. https://doi.org/10.1016/j.compscitech.2004.09.024
[8] H. Kong and A.P. Mouritz and R. Paton, Tensile extension properties and deformation mechanisms of multiaxial non-crimp fabrics, Composite Structures. 66 (2004) 249-259. https://doi.org/10.1016/j.compstruct.2004.04.046
[9] B. Schäfer, R. Zheng, P. Boisse, L. Kärger, Investigation of the compaction behavior of uni- and bidirectional non-crimp fabrics, Materials Research Proceedings 28 (2023) 331–338. https://doi.org/10.21741/9781644902479-36
[10] F.J. Schirmaier and K.A. Weidenmann and L. Kärger and F. Henning, Characterisation of the draping behaviour of unidirectional non-crimp fabrics (UD-NCF). Composites Part A: Applied Science and Manufacturing. 80 (2016) 28-38. https://doi.org/10.1016/j.compositesa.2015.10.004
[11] L. Kärger, S. Galkin, E. Kunze, M. Gude, B. Schäfer, Prediction of forming effects in UD-NCF by macroscopic forming simulation – Capabilities and limitations. Proceedings of the 24th international conference on material forming. (2021). https://doi.org/10.25518/esaform21.355
[12] S. Bel and N. Hamila and P. Boisse and F. Dumont, Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding, Composites Part A: Applied Science and Manufacturing. 43 (2012) 2269-2277. https://doi.org/10.1016/j.compositesa.2012.08.005
[13] J. Schirmaier, D. Dörr, F. Henning, and L. Kärger, A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF), Composites: Part A 102 (2017) 322–335. http://dx.doi.org/10.1016/j.compositesa.2017.08.009
[14] S. Galkin, E. Kunze, L. Kärger, R. Böhm, M. Gude, Experimental and Numerical Determination of the Local Fiber Volume Content of Unidirectional Non-Crimp Fabrics with Forming Effects, J. Compos. Sci. 2019, 3(1), 19. https://doi.org/10.3390/jcs3010019
[15] L. Li, Y. Zhao, H. Vuong, Y. Chen, J. Yang, Y. Duan, In-plane shear investigation of biaxial carbon non-crimp fabrics with experimental tests and finite element modeling, Materials & Design. 63 (2014) 757-765. https://doi.org/10.1016/j.matdes.2014.07.007
[16] G. Creech, A. K. Pickett, Meso-modelling of Non-Crimp Fabric composites for coupled drape and failure analysis. Journal of Materials Science. 41 (2006) 6725–6736. https://doi.org/10.1007/s10853-006-0213-6
[17] R. Zheng, B. Schäfer, A. Platzer, J. Colmars, N. Naouar, P. Boisse, A unit-cell mesoscale modelling of biaxial non-crimp-fabric based on a hyperelastic approach, Materials Research Proceedings 28 (2023) 285–292. https://doi.org/10.21741/9781644902479-3.1
[18] S.V. Lomov, G. Huysmans, Y. Luo, R.S. Parnas, A. Prodromou, I. Verpoest, F.R. Phelan, Textile composites: modelling strategies, Composites Part A: Applied Science and Manufacturing. 32 (2001) 1379-1394. https://doi.org/10.1016/S1359-835X(01)00038-0
[19] W. Wu, W. Li, Parametric modeling based on the real geometry of glass fiber unidirectional non-crimp fabric, Textile Research Journal. 89(2019). https://doi.org/10.1177/0040517518824846
[20] P. Boisse, J. Colmars, N. Hamila, N. Naouar, Q. Steer, Bending and wrinkling of composite fiber preforms and prepregs. a review and new developments in the draping simulations, Composites Part B: Engineering. 141 (2018) 234–249. https://doi.org/10.1016/j.compositesb.2017.12.061
[21] M. Ghazimoradi, E. A. Trejo, C. Butcher, J. Montesano, Characterizing the macroscopic response and local deformation mechanisms of a uni-directional non-crimp fabric, Composites Part A: Applied Science and Manufacturing. 156 (2022) 106857. https://doi.org/10.1016/j.compositesa.2022.106857
[22] F. F. T. Peirce B.Sc., F.Inst.P., 26—the “handle” of cloth as a measurable quantity, Journal of the Textile Institute Transactions. 21 (1930) T377–T416. https://doi.org/10.1080/19447023008661529
[23] A. Charmetant, E. Vidal-Sallé, P. Boisse, Hyperelastic modelling for mesoscopic analyses of composite reinforcements, Composites Science and Technology 71 (2011) 1623–1631. https://doi.org/10.1016/j.compscitech.2011.07.004
[24] A. Iwata, T. Inoue, N. Naouar, P. Boisse, S. V. Lomov, Coupled meso-macro simulation of woven fabric local deformation during draping, Compos. Part A 118 (2019) 267-280. https://doi.org/10.1016/j.compositesa.2019.01.004