Full field Continuous dynamic recrystallization simulations considering precipitates evolutions with DIGIMU®

Full field Continuous dynamic recrystallization simulations considering precipitates evolutions with DIGIMU®


download PDF

Abstract. Full field simulations have proven to be an efficient tool for grain size prediction in industrial processes, with wider ranges of validity and more comprehensive results than other approaches. DIGIMU® is a level-set based solution able to simulate grain growth, Smith-Zener pinning, discontinuous dynamic, post-dynamic, and static recrystallization, and very recently Continuous Dynamic Recrystallization (CDRX). The goal of this work is to explore the capabilities of DIGIMU® to CDRX with evolving second phase particles. First, a new formalism has been implemented to describe particles boundaries with a level-set function. It is then possible to apply growth or dissolution velocities to the boundaries, and to make new particles appear. Secondly, the orientation has been defined in each grain, and the grain boundary energy can then be computed from the intergranular disorientation with Read-Shockley model. A boundary migration solver which considers heterogeneous grain boundary energy is used, which enables the simulation of structure and substructure evolutions. The Gourdet-Montheillet CDRX model is adapted from a mean field to a full field framework, and the corresponding parameters for Zircaloy-4 are identified. Thanks to all those developments, DIGIMU® can simulate full field CDRX in high stacking fault energy materials, coupled with precipitates evolution. Several examples will be presented, some of them compared to experimental results.

Full-Field Simulation, CDRX, Zener Pinning, Precipitates Evolution, RVE

Published online 4/24/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: DE MICHELI Pascal, ALVARADO Karen, GRAND Victor, BERNACKI Marc, Full field Continuous dynamic recrystallization simulations considering precipitates evolutions with DIGIMU®, Materials Research Proceedings, Vol. 41, pp 2339-2346, 2024

DOI: https://doi.org/10.21741/9781644903131-257

The article was published as article 257 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] Rollett, A., Rohrer, G.S., Humphreys, J., Recrystallization and Related Annealing Phenomena (2017)
[2] K. Janssens, An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials, Math. Comput. Simul. 80(7) (2010) pp. 1361–1381. https://doi.org/10.1016/j.matcom.2009.02.011
[3] E. Miyoshi, T. Takaki, Multi-phase-field study of the effects of anisotropic grain-boundary properties on polycrystalline grain growth, J. Cryst. Growth 474 (2017) pp. 160–165. https://doi.org/10.1016/j.jcrysgro.2016.11.097
[4] N. Moelans, B. Blanpain, P. Wollants, Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems, Phys. Rev. B 78(2) (2008) pp. 024113. https://doi.org/10.1103/PhysRevB.78.024113
[5] S. Florez, K. Alvarado, D.P. Muñoz, M. Bernacki, A novel highly efficient lagrangian model for massively multidomain simulation applied to microstructural evolutions, Comput. Methods Appl. Mech. Eng. 367 (2020) p. 113107. https://doi.org/10.1016/j.cma.2020.113107
[6] M. Bernacki, Y. Chastel, T. Coupez, R. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scr. Mater. 58(12) (2008) pp. 1129–1132. https://doi.org/10.1016/j.scriptamat.2008.02.016
[7] M. Elsey, S. Esedoglu, P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, J. Comput. Phys. 228(21) (2009) pp. 8015–8033. https://doi.org/10.1016/j.jcp.2009.07.020
[8] P.O. De Micheli, Maire, L., Cardinaux, D., Moussa, C., N. Bozzolo, M. Bernacki, Digimu® pp. Full field recrystallization simulations for optimization of multi-pass processes, AIP Conf Proc 2113(1) (2019) pp. 040014. https://doi.org/10.1063/1.5112548
[9] B. Scholtes, R. Boulais-Sinou, A. Settefrati, D.P. Muñoz, I. Poitrault, A. Montouchet, N. Bozzolo, M. Bernacki, 3D level set modeling of static recrystallization considering stored energy fields, Comput. Mater. Sci. 122 (2016) pp. 57–71. https://doi.org/10.1016/j.commatsci.2016.04.045
[10] L. Maire, B. Scholtes, C. Moussa, N. Bozzolo, D.P. Muñoz, A. Settefrati, M. Bernacki, Modeling of dynamic and post-dynamic recrystallization by coupling a full field approach to phenomenological laws, Mater. Des. 133 (2017) pp.498–519. https://doi.org/10.1016/j.matdes.2017.08.015
[11] A. Agnoli, N. Bozzolo, R. Logé, J.M. Franchet, J. Laigo, M. Bernacki, Development of a level set methodology to simulate grain growth in the presence of real secondary phase particles and stored energy – Application to a nickel-base superalloy, Comput. Mater. Sci. 89 (2014) pp. 233–241. https://doi.org/10.1016/j.commatsci.2014.03.054
[12] H. Brüggemann, A. Quadfasel, J.A. Nietsch, M. Teller, P. De Micheli, B. Flipon, M. Bernacki (2021), Korngrößenvorhersage beim freiformschmieden von inconel 718 mit DIGIMU®, massiv UMFORMUNG 2021(3) pp. 50–54
[13] F. Villaret, B. Hary, Y. de Carlan, T. Baudin, R. Logé, L. Maire, M. Bernacki, Probabilistic and deterministic full field approaches to simulate recrystallization in ods steels, Comput. Mater. Sci. 179 (2020) pp. 109646. https://doi.org/10.1016/j.commatsci.2020.109646
[14] A. Agnoli, M. Bernacki, R. Logé, J.M. Franchet, J. Laigo, N. Bozzolo, Selective growth of low stored energy grains during δ sub-solvus annealing in the inconel 718 nickel base superalloy, Metall Mater Trans A A 46(9) (2015), pp. 4405–4421. https://doi.org/10.1007/s11661-015-3035-9
[15] K. Alvarado, S. Florez, B. Flipon, N. Bozzolo, M. Bernacki, A level set approach to simulate grain growth with an evolving population of second phase particles, Model Simul Mat Sci Eng 29(3) (2021) p. 035009. https://doi.org/10.1088/1361-651X/abe0a7
[16] K. Alvarado, I. Janeiro, S. Florez, B. Flipon, J.M. Franchet, D. Locq, C. Dumont, N. Bozzolo, M. Bernacki, Dissolution of the primary γ’ precipitates and grain growth during solution treatment of three nickel base superalloys, Metals 11(12) (2021). https://doi.org/10.3390/met11121921
[17] S. Gourdet, F. Montheillet, A model of continuous dynamic recrystallization, Acta Mater. 51(9) (2003) pp. 2685–2699. https://doi.org/10.1016/S1359-6454(03)00078-8
[18] V. Grand, B. Flipon, A. Gaillac, M. Bernacki, Simulation of continuous dynamic recrystallization using a level-set method, Materials 15(23) (2022). https://doi.org/10.3390/ma15238547
[19] A. Gaillac, V. Grand, A. Arsen, Q. Gaillard, M. Bernacki, Towards multi-scale modeling of zirconium alloys recrystallization and application to thermo-mechanical processes optimization, Key Eng. Mater. 926(8) (2022) pp. 443–451. https://doi.org/10.4028/p-54m016
[20] V. Grand, Characterization and modeling of zircaloy-4 recrystallization during hot forming, PhD manuscript, MINES Paris PSL (2022)
[21] C.S. Smith, Introduction to grains, phases, and interfaces—an interpretation of microstructure, Trans. Am. Inst. Min. Metall. Eng. 175(2) (1948) pp. 15–51
[22] C. Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys. 20(10) (1949) pp. 950–953. https://doi.org/10.1063/1.1698258
[23] B. Scholtes, D. Ilin, A. Settefrati, N. Bozzolo, A. Agnoli, M. Bernacki, Full field modeling of the Zener pinning phenomenon in a level set framework – discussion of classical limiting mean grain size equation, Proceedings of the 13th International Symposium on Superalloys (2016). https://doi.org/10.1002/9781119075646.ch53
[24] J. Fausty, N. Bozzolo, D.P. Muñoz, M. Bernacki, A novel level-set finite element formulation for grain growth with heterogeneous grain boundary energies, Mater. Des. 160 (2018) pp. 578–590. https://doi.org/10.1016/j.matdes.2018.09.050
[25] J. Fausty, N. Bozzolo, M. Bernacki, A 2d level set finite element grain coarsening study with heterogeneous grain boundary energies, Appl. Math. Model. 78 (2020) pp. 505–518. https://doi.org/10.1016/j.apm.2019.10.008
[26] B. Murgas, S. Florez, N. Bozzolo, J. Fausty, M. Bernacki, Comparative study and limits of different level-set formulations for the modeling of anisotropic grain growth, Materials 14(14) (2021). https://doi.org/10.3390/ma14143883
[27] V. Grand, B. Flipon, A. Gaillac, M. Bernacki, Characterization and modeling of the influence of initial microstructure on recrystallization of zircaloy-4 during hot forming, J. ASTM Int. In press (2022). https://doi.org/10.1520/STP164520220010