Constitutive model validity evaluation for MT 2.0 applications

Constitutive model validity evaluation for MT 2.0 applications


download PDF

Abstract. This paper demonstrates a methodology to discriminate between the performances of different material models within the framework of Material Testing 2.0, which consists in coupling heterogeneous test configurations, full-field measurements using for instance Digital Image Correlation (DIC) and inverse identification like the Virtual Fields Method (VFM). The methodology relies on using a set of different virtual fields for parameter identification with a selected model, and to evaluate the performance of the model. The paper illustrates this methodology on anisotropic metal plasticity.

Digital Image Correlation, Virtual Fields Method, Material Testing 2.0, Model Validity Evaluation

Published online 4/24/2024, 5 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PESHAVE Amar, LAVA Pascal, COPPIETERS Sam, PIERRON Fabrice, Constitutive model validity evaluation for MT 2.0 applications, Materials Research Proceedings, Vol. 41, pp 1836-1840, 2024


The article was published as article 203 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] Y. Zhang, A. Yamanaka, S. Cooreman, T. Kuwabara and S. Coppieters, S., Inverse identification of plastic anisotropy through multiple non-conventional mechanical experiments, Int. J. of Sol. and Struct., 285 (2023) 112534.
[2] M. Rossi, A. Lattanzi, L. Morichelli, J.M.P Martins, S. Thuillier, A. Andrade-Campos and S. Coppieters, Testing methodologies for the calibration of advanced plasticity models for sheet metals: A review. Strain, 58(6) (2022) e12426.
[3] F. Pierron and M. Grédiac, The Virtual Fields Method, Springer, New York, 2012.
[4] M. Flaschel, S. Kumar and L. De Lorenzis, Discovering plasticity models without stress data, Comp. Mat., 8(1) (2022) 91.
[5] R. Langlois, M. Coret and J. Réthoré, Non-parametric stress field estimation for history- dependent materials: Application to ductile material exhibiting Piobert–Lüders localization bands, Strain, 58(4) (2022) e12410.
[6] B.C. Cameron and C.C Tasan, Full-field stress computation from measured deformation fields: A hyperbolic formulation. J. Mech. Phys. Sol., 147 (2021) 104186.
[7] A. Peshave, F. Pierron, P. Lava, D. Moens, D. Vandepitte, Metrics to evaluate constitutive model fitness based on DIC, in revision, Strain (2023).
[8] M.H.H Meuwissen, C.W.J. Oomens, F.P.T. Baaijens, R. Petterson, and J.D. Janssen, Determination of the elasto-plastic properties of aluminium using a mixed numerical–experimental method, J. Mat. Proc. Tech., 75(1–3) (1998) 204-211.
[9] P. Lava, S. Cooreman, S. Coppieters, M. De Strycker and D. Debruyne, Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Opt. Las. Eng., 47(7- 8) (2009) 747-753.
[10] M. Rossi, P. Lava, F. Pierron, D. Debruyne and M. Sasso, Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM, Strain, 51(3) (2015) 206-222.
[11] D. Claire, F. Hild, F. and S. Roux, A finite element formulation to identify damage fields: The equilibrium gap method. Int. J. for Num. Meth. in Eng., 61(2) (2004) 189-208.
[12] C. Devivier, F. Pierron, and M. Wisnom, Impact damage detection in composite plates using deflectometry and the Virtual Fields Method, Comp. A, 48 (2013) 201–218.
[13] J. Considine, F. Pierron, K. Turner, P. Lava, and X. Tang, Smoothly varying inplane stiffness heterogeneity evaluated under uniaxial tensile stress, Strain, 53(5) (2017) e12237.
[14] Y. Pannier, S. Avril, R. Rotinat and F. Pierron, Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method, Exp. Mech., 46(6) (2006) 735-755.