On the impact welding of dissimilar alloys for use in multimaterial skeletal fixation devices

On the impact welding of dissimilar alloys for use in multimaterial skeletal fixation devices

SANGUEDOLCE Michela, ABDELMAOLA Mohammed, BORDA Francesco, CHO Dae Hyun, AVEY Thomas, OLIVAS-ALANIS Luis H., CHMIELEWSKA Agnieszka, VIVEK Anupam, DAEHN Glenn, LUO Alan A., PANTON Boyd, FILICE Luigino, DEAN David

download PDF

Abstract. Multi-material skeletal fixators appear to be a promising approach to reduce failure due to the high stiffness of standard-of-care fixators. Nevertheless, joining different materials is challenging due to their different properties. High-velocity impact welding, a solid-state welding process, involves the collision of a “flyer” (moving) part with a stationary “target” at very high speed (i.e., hundreds of meters per second). In this paper we present a preliminary experimental campaign to use laser impact welding to join NiTi and Mg alloy Mg-1.2Zn-0.5Ca-0.5Mn (wt%) sheets and the parallel development of a finite element model to allow gathering further insights into the complex phenomena involved in the process. Preliminary results show the deposition of the Mg alloy on NiTi sheets by tuning the joining process conditions and promising results of the numerical model in terms of accordance with experiments: these findings provide the basis for further process optimization, numerical model calibration and the application of a valid protocol for multi-material skeletal fixation devices.

Finite Element Analysis, Impact Welding, Dissimilar Welding, NiTi Alloys, Mg Alloys, Skeletal Fixation

Published online 4/24/2024, 9 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: SANGUEDOLCE Michela, ABDELMAOLA Mohammed, BORDA Francesco, CHO Dae Hyun, AVEY Thomas, OLIVAS-ALANIS Luis H., CHMIELEWSKA Agnieszka, VIVEK Anupam, DAEHN Glenn, LUO Alan A., PANTON Boyd, FILICE Luigino, DEAN David, On the impact welding of dissimilar alloys for use in multimaterial skeletal fixation devices, Materials Research Proceedings, Vol. 41, pp 1732-1740, 2024

DOI: https://doi.org/10.21741/9781644903131-192

The article was published as article 192 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] A. Chmielewska and D. Dean, The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomater. 173. 51–65. (Jan. 2024). https://doi.org/10.1016/j.actbio.2023.11.011
[2] M. S. Gogheri, M. Kasiri-Asgarani, H. R. Bakhsheshi-Rad, H. Ghayour, and M. Rafiei, Mechanical properties, corrosion behavior and biocompatibility of orthopedic pure titanium−magnesium alloy screw prepared by friction welding. Trans. Nonferrous Met. Soc. China (English Ed. 30 (11). 2952–2966. (2020). https://doi.org/10.1016/S1003-6326(20)65434-6
[3] A. Chmielewska, A. Luo, B. Panton, L. Olivas, and D. Dean, Multimaterial Stiffness-Matched Implants (US Provisional Patent Application)
[4] N. Gangil, A. N. Siddiquee, S. Mufazzal, S. M. Muzakkir, and S. Maheshwari, Shape memory alloy based NiTi reinforced functionally graded material for vibration damping. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 235 (12). 2771–2782. (2021). https://doi.org/10.1177/14644207211035521
[5] S. Ji, W. Hu, Z. Ma, Q. Li, and X. Gong, Friction Stir Lap Welding of Mg/Ti Dissimilar Alloys Using a Slight Penetration Depth. JOM. 72 (4). 1589–1596. (Apr. 2020). https://doi.org/10.1007/s11837-019-03959-x
[6] M. Sen, S. Shankar, and S. Chattopadhyaya, Micro-friction stir welding (μFSW) – A review. Mater. Today Proc. 27. 2469–2473. (2020). https://doi.org/10.1016/j.matpr.2019.09.220
[7] A. Shamsolhodaei, J. P. Oliveira, B. Panton, B. Ballesteros, N. Schell, and Y. N. Zhou, Superelasticity preservation in dissimilar joint of NiTi shape memory alloy to biomedical PtIr. Materialia. 16 (November 2020). 101090. (2021). https://doi.org/10.1016/j.mtla.2021.101090
[8] W. Cai et al., A state-of-the-art review on solid-state metal joining. J. Manuf. Sci. Eng. Trans. ASME. 141 (3). (2019). https://doi.org/10.1115/1.4041182
[9] H. Wang and Y. Wang, High-velocity impact welding process: A review. Metals (Basel). 9 (2). (2019). https://doi.org/10.3390/met9020144
[10] F. Du, L. Deng, X. Wang, M. Zhang, J. Jin, and J. Zhang, Study on interfacial characteristics and properties of NiTi/Al–Mg joint by vaporizing foil actuator welding. J. Mater. Res. Technol. 20. 3429–3440. (Sep. 2022). https://doi.org/10.1016/j.jmrt.2022.08.090
[11] J. Li, B. Panton, S. Liang, A. Vivek, and G. Daehn, High strength welding of NiTi and stainless steel by impact: Process, structure and properties. Mater. Today Commun. 25 (March). 101306. (2020). https://doi.org/10.1016/j.mtcomm.2020.101306
[12] K. Wang, H. Wang, H. Zhou, W. Zheng, and A. Xu, Research status and prospect of laser impact welding. Metals (Basel). 10 (11). 1–18. (2020). https://doi.org/10.3390/met10111444
[13] H. Wang, A. Vivek, Y. Wang, G. Taber, and G. S. Daehn, Laser impact welding application in joining aluminum to titanium. J. Laser Appl. 28 (3). (2016). https://doi.org/10.2351/1.4946887
[14] J. Bellmann et al., Particle Ejection by Jetting and Related Effects in Impact Welding Processes. Metals (Basel). 10 (8). (2020). https://doi.org/10.3390/met10081108
[15] G. Gleason, K. Bailey, S. Sunny, A. Malik, and R. A. Bernal, Influence of surface roughness on the transient interfacial phenomena in laser impact welding. J. Manuf. Process. 80 (February). 480–490. (2022). https://doi.org/10.1016/j.jmapro.2022.06.022
[16] W. R. Wagner, S. E. Sakiyama-Elbert, G. Zhang, and M. J. Yaszemski, Biomaterials Science: An Introduction to Materials in Medicine. 2020. https://doi.org/10.1016/C2017-0-02323-6
[17] A. Nassiri, G. Chini, A. Vivek, G. Daehn, and B. Kinsey, Arbitrary Lagrangian-Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact welding. Mater. Des. 88. 345–358. (2015). https://doi.org/10.1016/j.matdes.2015.09.005
[18] S. Sadeh et al., Simulation and experimental comparison of laser impact welding with a plasma pressure model. Metals (Basel). 9 (11). (2019). https://doi.org/10.3390/met9111196
[19] X. Wang, H. Zhang, Z. Shen, J. Li, Q. Qian, and H. Liu, Experimental and numerical investigation of laser shock synchronous welding and forming of Copper/Aluminum. Opt. Lasers Eng. 86. 291–302. (Nov. 2016). https://doi.org/10.1016/j.optlaseng.2016.06.018
[20] Y. V. R. K. Prasad, K. P. Rao, and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps. Second. ASM International, 2015. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/B978008033454750019X
[21] P. J. Arrazola, T. Özel, D. Umbrello, M. Davies, and I. S. Jawahir, Recent advances in modelling of metal machining processes. CIRP Ann. – Manuf. Technol. 62 (2). 695–718. (2013). https://doi.org/10.1016/j.cirp.2013.05.006
[22] G. Gleason, S. Sunny, S. Sadeh, H. Yu, and A. Malik, Eulerian modeling of plasma-pressure driven laser impact weld processes. Procedia Manuf. 48 (2019). 204–214. (2020). https://doi.org/10.1016/j.promfg.2020.05.039
[23] S. Kalpakjian and S. R. Schmid, Tecnologia Meccanica. Sixth. Pearson, 2021.
[24] O. Majidi, M. Jahazi, and N. Bombardier, Finite element simulation of high-speed blow forming of an automotive component. Metals (Basel). 8 (11). (2018). https://doi.org/10.3390/met8110901
[25] M. M. Avedesian and H. Baker, Eds., ASM Specialty Handbook: Magnesium and Magnesium Alloys. ASM International, 1999.
[26] J. L. Robinson, The mechanics of wave formation in impact welding. Philos. Mag. A J. Theor. Exp. Appl. Phys. 31 (3). 587–597. (Mar. 1975). https://doi.org/10.1080/14786437508226540
[27] H. Wang, D. Liu, J. C. Lippold, and G. S. Daehn, Laser impact welding for joining similar and dissimilar metal combinations with various target configurations. J. Mater. Process. Tech. 278 (November 2019). 116498. (2020). https://doi.org/10.1016/j.jmatprotec.2019.116498
[28] T. Lee, A. Nassiri, T. Dittrich, A. Vivek, and G. Daehn, Microstructure development in impact welding of a model system. Scr. Mater. 178. 203–206. (2020). https://doi.org/10.1016/j.scriptamat.2019.11.031
[29] B. Bhushan, Introduction to tribology. Second Edi. John Wiley & Sons, Ltd., 2013.
[30] F. Gagliardi, T. Citrea, G. Ambrogio, and L. Filice, Influence of the process setup on the microstructure and mechanical properties evolution in porthole die extrusion. Mater. Des. 60. 274–281. (2014). https://doi.org/10.1016/j.matdes.2014.04.004