Study on the effects of tool design and process parameters on the robustness of deep drawing

Study on the effects of tool design and process parameters on the robustness of deep drawing

HEINZEL Christine, THIERY Sebastian, BEN KHALIFA Noomane

download PDF

Abstract. In metal forming manufacturing processes, parameter fluctuations and an incomplete understanding of the process can lead to an undesirable deviation of the product properties from the required specifications and, therefore, affect the robustness of the process. In deep drawing, defects such as cracks and wrinkling can be linked to uncertainties within the process- and tool design parameters. To investigate the combined effects of these parameters on the quality of the finished product, simulation models are used to study the effects of parameter changes on the product quality. With the purpose of studying the effects of significant process and tool design parameters on the deep drawing process, a numerical parameter study is carried out based on a modular tool which allows for an investigation of process parameter variations within an adjustable parameter range of tool radii. While the material draw-in and the maximum punch force are used as quality indicators of the deep-drawing process, it could be shown that the elongation of the absolute length of the finished part can be used as an additional indicator for material thinning when observing the effects of the punch shoulder and die shoulder radii on the process robustness.

Deep Drawing, Robustness, Modular Tool, Material Draw-In

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: HEINZEL Christine, THIERY Sebastian, BEN KHALIFA Noomane, Study on the effects of tool design and process parameters on the robustness of deep drawing, Materials Research Proceedings, Vol. 41, pp 1488-1497, 2024


The article was published as article 165 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] Schuler GmbH, Metal forming handbook, Springer-Verlag, Berlin, New York, 1998.
[2] J.M. Allwood, S.R. Duncan, J. Cao, P. Groche, G. Hirt, B. Kinsey, T. Kuboki, M. Liewald, A. Sterzing, A.E. Tekkaya, Closed-loop control of product properties in metal forming, CIRP Annals 65 (2016) 573–596.
[3] F. Henning, E. Moeller (Eds.), Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung, second., überarbeitete und erweiterte Auflage, Hanser, München, 2020.
[4] F. Klocke, Manufacturing Processes 4, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
[5] S. Qin, H.M. Shang, C.J. Tay, J.X. Mo, On the extent of stretching during deep drawing, Journal of Materials Processing Technology 59 (1996) 386–390.
[6] A. Birkert, S. Haage, M. Straub, Umformtechnische Herstellung komplexer Karosserieteile, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
[7] Z. Marciniak, J.L. Dunca, S.J. Hu, Mechanics of sheet metal forming, secondnd ed., Elsevier Butterworth-Heinemann, Oxford, 2002.
[8] K. Siegert, E. Dannenmann, S. Wagner, A. Galaiko, Closed-Loop Control System for Blank Holder Forces in Deep Drawing, CIRP Annals 44 (1995) 251–254.
[9] K. Chen, A. Breunig, J. Ha, B.L. Kinsey, P. Groche, Y.P. Korkolis, Robustness of deep-drawing finite-element simulations to process variations, Int J Mater Form 15 (2022).
[10] G. Behrens, F. Vollertsen, Influence of Tool Geometry Variation on the Punch Force in Micro Deep Drawing, KEM 554-557 (2013) 1306–1311.
[11] P.R. Tiwari, A. Rathore, M.G. Bodkhe, Factors affecting the deep drawing process – A review, Materials Today: Proceedings 56 (2022) 2902–2908.
[12] M. Liewald, T. Bergs, P. Groche, B.-A. Behrens, D. Briesenick, M. Müller, P. Niemietz, C. Kubik, F. Müller, Perspectives on data-driven models and its potentials in metal forming and blanking technologies, Prod. Eng. Res. Devel. 16 (2022) 607–625.
[13] K. Bouchaâla, M.F. Ghanameh, M. Faqir, M. Mada, E. Essadiqi, Numerical investigation of the effect of punch corner radius and die shoulder radius on the flange earrings for AA1050 and AA1100 aluminum alloys in cylindrical deep drawing process, Heliyon 7 (2021) e06662.
[14] G. Behrens, M. Ruhe, H. Tetzel, F. Vollertsen, Effect of tool geometry variations on the punch force in micro deep drawing of rectangular components, Prod. Eng. Res. Devel. 9 (2015) 195–201.
[15] T. Chaimongkon, S. Panich, V. Uthaisangsuk, Anisotropic fracture forming limit curve and its applications for sheet metal forming with complex strain paths of aluminum sheet, Int J Adv Manuf Technol 115 (2021) 3553–3577.
[16] M. Kardan, A. Parvizi, A. Askari, Experimental and Finite Element Results for Optimization of Punch Force and Thickness Distribution in Deep Drawing Process, Arab J Sci Eng 43 (2018) 1165–1175.
[17] E. Doege, B.-A. Behrens, Handbuch Umformtechnik: Grundlagen, Technologien, Maschinen, third. Aufl. twentiethsixteenth, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
[18] N. Rigas, M. Merklein, Characterization of the Tribological Behavior of Different Tool Coatings and Dry Lubricant for High‐Strength Aluminum Alloys at Elevated Temperatures, Adv Eng Mater 25 (2023).
[19] F. Özkaya, Development of a tool concept with selectively oxidised inserts for dry deep drawing (2019).
[20] K. Siebertz, D. van Bebber, T. Hochkirchen, Statistische Versuchsplanung, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.
[21] P.K.-S. Lee, An Analysis of the Effect of Process Parameters on the Formability of Sheet Metal. Dissertation, Birmingham, 1972.
[22] M. Moshksar, A. Zamanian, Optimization of the tool geometry in the deep drawing of aluminium, Journal of Materials Processing Technology 72 (1997) 363–370.
[23] G. Behrens, F.O. Trier, H. Tetzel, F. Vollertsen, Influence of tool geometry variations on the limiting drawing ratio in micro deep drawing, Int J Mater Form 9 (2016) 253–258.