Electrically-assisted forming of 5754 aluminium alloy under different strain conditions

Electrically-assisted forming of 5754 aluminium alloy under different strain conditions

DOBRAS Daniel, ZIMNIAK Zbigniew, DZIUBEK Mateusz

download PDF

Abstract. Electricity-assisted forming processes can significantly improve material ductility and process efficiency. However, further research into different strain conditions is necessary, for example, in stamping processes. In this study, tensile and deep drawing tests of the 5754 aluminium alloy were carried out with the application of current pulses on a specially constructed experimental setup. The study showed that it is possible to increase the plasticity of the material. The main cause responsible for the increase in plasticity was dynamic recovery.

Electroplastic Effect, Dynamic Recovery, Deep Drawing

Published online 4/24/2024, 8 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: DOBRAS Daniel, ZIMNIAK Zbigniew, DZIUBEK Mateusz, Electrically-assisted forming of 5754 aluminium alloy under different strain conditions, Materials Research Proceedings, Vol. 41, pp 1408-1415, 2024

DOI: https://doi.org/10.21741/9781644903131-156

The article was published as article 156 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] T. Luo, L. Lei, K. Feng, M. Yang, Y. Jiang, Achieving high strength and large ductility of an ultrafine-grained 211ZX aluminium alloy processed by improved thermomechanical processing, Arch. Civ. Mech. Eng. 23 (2023) 1-17. https://doi.org/10.1007/s43452-023-00664-0
[2] Z. Gronostajski, K. Jaśkiewicz, P. Kaczyński, M. Skwarski, S. Polak, J. Krawczyk, W. Chorzępa, P. Trzpis, W-Temper forming of B-pillar from 7075 aluminum alloy, CIRP Ann. 71 (2022) 221-224. https://doi.org/10.1016/j.cirp.2022.03.019
[3] W. A. Salandro, J. T. Roth, Formation of 5052 aluminum channels using Electrically-Assisted Manufacturing (EAM), Proc. ASME Int. Manuf. Sci. Eng. Conf. 2 (2009) 599-608. https://doi.org/10.1115/MSEC2009-84117
[4] V. Stolyarov, A. Misochenko, A Pulsed Current Application to the Deformation Processing of Materials, Materials (Basel) 16 (2023) 1-20. https://doi.org/10.3390/ma16186270
[5] M. Kim, J. Song, H. Huh, Effect of Pre-strain on Tensile Properties of Al5052-H32 under an Electropulsing Condition, Procedia Eng. 207 (2017) 371-376. https://doi.org/10.1016/j.proeng.2017.10.790
[6] H. J. Jeong M. J. Kim, J. W. Park, C. D. Yim, J. J. Kim, O. D. Kwon, P. P. Madakashira, H. N. Han, Effect of pulsed electric current on dissolution of Mg17Al12 phases in as-extruded AZ91 magnesium alloy, Mater. Sci. Eng. A, 684 (2017) 668-676. https://doi.org/10.1016/j.msea.2016.12.103
[7] J. Zhao, G. X. Wang, Y. Dong, C. Ye, Multiscale modeling of localized resistive heating in nanocrystalline metals subjected to electropulsing, J. Appl. Phys. 122 (2017) 1-10. https://doi.org/10.1063/1.4998938
[8] Y. H. Zhu, S. To, W. B. Lee, X. M. Liu, Y. B. Jiang, G. Y. Tang, Effects of dynamic electropulsing on microstructure and elongation of a Zn-Al alloy, Mater. Sci. Eng. A 501 (2009) 125-132. https://doi.org/10.1016/j.msea.2008.09.080
[9] S. Zhao, R. Zhang, Y. Chong, X. Li, A. Abu-Odeh, E. Rothchild, D. C. Chrzan, M. Asta, J. W. Morris Jr., A. M. Minor, Defect reconfiguration in a Ti–Al alloy via electroplasticity, Nat. Mater. 20 (2021) 468-472. https://doi.org/10.1038/s41563-020-00817-z
[10] X. Li, Q. Zhu, Y. Hong, H. Zheng, J. Wang, J. Wang, Z. Zhang, Revealing the pulse-induced electroplasticity by decoupling electron wind force, Nat. Commun. 13 (2022) 1-9. https://doi.org/10.1038/s41467-022-34333-2
[11] Z. Zimniak, G. Radkiewicz, The electroplastic effect in the cold-drawing of copper wires for the automotive industry, Arch. Civ. Mech. Eng. 8 (2008) 173-179. doi:
[12] Z. Xu, G. Tang, S. Tian, F. Ding, H. Tian, Research of electroplastic rolling of AZ31 Mg alloy strip, J. Mater. Process. Technol. 182 (2007) 128-133. https://doi.org/10.1016/j.jmatprotec.2006.07.019
[13] H. Xie, X. Dong, Z. Ai, Q. Wang, F. Peng, K. Liu, F. Chen, J. Wang, Experimental investigation on electrically assisted cylindrical deep drawing of AZ31B magnesium alloy sheet, Int. J. Adv. Manuf. Technol. 86 (2016) 1063-1069. https://doi.org/10.1007/s00170-015-8246-0
[14] Z. Lv, Y. Zhou, L. Zhan, Z. Zang, B. Zhou, S. Qin, Electrically assisted deep drawing on high-strength steel sheet, Int. J. Adv. Manuf. Technol. 112 (2021) 763-773. https://doi.org/10.1007/s00170-020-06335-1
[15] D. Dobras, Z. Zimniak, M. Zwierzchowski, Electrically-assisted deep drawing of 5754 aluminium alloy sheet, Mater. Res. Proc. 28 (2023) 987-1006. doi:
[16] W.A. Salandro, J. J. Jones, T. A. McNeal, J. T. Roth, S. T. Hong, M. T. Smith, Formability of Al 5xxx sheet metals using pulsed current for various heat treatments, J. Manuf. Sci. Eng. Trans. ASME 132 (2010) 1-11. https://doi.org/10.1115/1.4002185
[17] K. Hariharan, M. G. Lee, M. J. Kim, H. N. Han, D. Kim, S. Choi, Decoupling Thermal and Electrical Effect in an Electrically Assisted Uniaxial Tensile Test Using Finite Element Analysis, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 46 (2015) 3043-3051. https://doi.org/10.1007/s11661-015-2879-3
[18] Z. C. Sun, L. S. Zheng, H. Yang, Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation, Mater. Charact., 90 (2014) 71-80. https://doi.org/10.1016/j.matchar.2014.01.019
[19] H. Wang, W. Song, K. Koenigsmann, S. Zhang, L. Ren, K. Yang, The role of prismatic slip dependent dynamic recrystallization in the fabrication of a submicrocrystalline Ti-Cu alloy with high thermostability, Mater. Des., 188 (2020) 1-16. https://doi.org/10.1016/j.matdes.2020.108475