Effects of machine hammer peening on case-hardened 16MnCr5 gear analogue shafts

Effects of machine hammer peening on case-hardened 16MnCr5 gear analogue shafts


download PDF

Abstract. Gears are integral to many mechanical systems, including industrial machinery and automotive transmissions. Subject to significant mechanical and tribological stresses from rotational forces and torque transmission, gears often face challenges like surface wear and fatigue. Enhancing the durability and performance of gears is therefore vital, and this is where manufacturing processes such as Machine Hammer Peening (MHP) come into play. As an incremental forming process, MHP has the potential to substantially increase the mechanical and tribological load capacities of gears. The objective of this study is to assess how MHP can enhance the surface characteristics of case-hardened 16MnCr5 (1.7131) gear analogue shafts, focusing on the reduction of surface roughness and the increase in surface hardness. Such improvements contribute to improved wear resistance, which can significantly extend the lifespan of the gears, ensuring more reliable performance in demanding operational conditions.

Machine Hammer Peening, Surface Structuring, Strain Hardening, Gear

Published online 4/24/2024, 9 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: DADGAR Mohammad, GRESCHERT René, MÜLLER Martina, SKLENAK Sebastian, HERRIG Tim, BRIMMERS Jens, BERGS Thomas, Effects of machine hammer peening on case-hardened 16MnCr5 gear analogue shafts, Materials Research Proceedings, Vol. 41, pp 1373-1381, 2024

DOI: https://doi.org/10.21741/9781644903131-152

The article was published as article 152 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] D.H. Trauth. Tribology of Machine Hammer Peened Tool Surfaces for Deep Drawing [Dissertation]: Fraunhofer-Institut für Produktionstechnologie IPT; Rheinisch-Westfälische Technische Hochschule Aachen; Apprimus Verlag [2016].
[2] VDI Verein Deutscher Ingenieure e.V. Maschinelles Oberflächenhämmern: Grundlagen (3416 Blatt 1) [2019].
[3] C. Revilla-Gomez, J-Y. Buffiere, C. Verdu, C. Peyrac, L. Daflon, F. Lefebvre. Assessment of the Surface Hardening Effects from Hammer Peening on High Strength Steel. Procedia Engineering 66:150–60 [2013]. Https://doi.org/10.1016/j.proeng.2013.12.070
[4] F. Bleicher, C. Lechner, C. Habersohn, E. Kozeschnik, B. Adjassoho, H. Kaminski. Mechanism of surface modification using machine hammer peening technology. CIRP Annals 61(1):375–8 [2012]. Https://doi.org/10.1016/j.cirp.2012.03.139
[5] M. Dadgar, S. Graefe, M. Müller, T. Herrig, T. Bergs. Influences of Machine Hammer Peening on Inconel 718 Workpieces Manufactured by Wire-based Laser Metal Deposition. Procedia CIRP 121(2):192-197 [2024]. Https://doi.org/10.1016/j.procir.2023.08.064
[6] P. Sandmann, S. Keller, N. Kashaev, S. Ghouse, P.A. Hooper, B. Klusemann, C.M. Davies. Influence of laser shock peening on the residual stresses in additively manufactured 316L by Laser Powder Bed Fusion: A combined experimental–numerical study. Additive Manufacturing 60:103204 [2022]. Https://doi.org/10.1016/j.addma.2022.103204
[7] Y. Xiao, C. Peng. Influence of laser shock peening on fatigue life of transmission gears in aeroengine. 2016 Prognostics and System Health Management Conference (PHM-Chengdu). IEEE 1–4 [2016]. Https://doi.org/10.1109/PHM.2016.7819847
[8] F. Klocke, C. Brecher. Zahnrad- und Getriebetechnik: Auslegung – Herstellung – Untersuchung – Simulation. München: Carl Hanser Verlag [2017].
[9] R.D. Lambert, C.J. Aylott, B.A. Shaw. Evaluation of bending fatigue strength in automotive gear steel subjected to shot peening techniques. Procedia Structural Integrity 13:1855–60 [2018]. Https://doi.org/10.1016/j.prostr.2018.12.329
[10] R. Rego, C. Löpenhaus, J. Gomes, F. Klocke. Residual stress interaction on gear manufacturing. Journal of Materials Processing Technology 252:249–58 [2018]. Https://doi.org/10.1016/j.jmatprotec.2017.09.017
[11] T. Bergs, L. Uhlmann, R Mannens, D. Trauth. Inkrementelle Randzonenmodifikation von einsatzgehärteten 16MnCr5-Stirnrädern mittels maschinellem Oberflächenhämmern. Tribologie und Schmierungstechnik 67(2) 4-17 [2020]. Https://doi.org/10.30419/TuS-2020-0008
[12] D. Mevissen, L. Uhlmann, J. Brimmers, T. Herring, T. Bergs. Wälzfestigkeit maschinell gehämmerter Oberflächenstrukturen im Zahnflankenanalogieversuch. Tribologie und Schmierungstechnik 69(4) 34–40 [2022]. Https://doi.org/10.24053/TuS-2022-0021.
[13] L.H. Uhlmann. Optimization of the application behavior of spur gears by means of machine hammered tooth surfaces [M.Sc. Thesis]: RWTH Aachen University [2019].
[14] DIN EN ISO 4287: Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Tastschnittverfahren – Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit. 3rd ed. Berlin: Beuth [2010].
[15] VDI-Richtlinie 2612-5: Measurement and testing of gearings Surface roughness measurement of cylindrical gears and bevel gears by means of stylus-type instruments [2015].
[16] DIN-Normenausschuss Materialprüfung. DIN EN ISO 6507-1, Metallische Werkstoffe – Härteprüfung nach Vickers – Teil 1: Prüfverfahren (ISO/DIS 6507-1:2022); Deutsche und Englische Fassung prEN ISO 6507-1 [2022].