A novel method to investigate tribological behaviors under transient temperatures using Pin-on-Cylinder tribometer and IR-thermography in glass forming

A novel method to investigate tribological behaviors under transient temperatures using Pin-on-Cylinder tribometer and IR-thermography in glass forming

VU Anh Tuan, GRUNWALD Tim, BERGS Thomas

download PDF

Abstract. In high-temperature material forming, achieving high precision demands a nuanced understanding of thermal and mechanical interactions at the contact interface. Conventional methods, often involving separate measurements of friction and heat transfer coefficients, encounter challenges as the growing number of influencing factors amplifies experimental complexity. This research introduces an innovative approach enabling the simultaneous determination of both coefficients in a single experimental run. A specially designed pin-on-cylinder tribometer enables the measurement of transient friction forces resulting from temperature variations at the interface, recorded by an infrared thermographic camera. Inverse methods are developed to derive the friction and heat transfer coefficients from the acquired transient force and temperature data. The method expedites the determination of contact coefficients, providing an efficient avenue for numerical and analytical studies in hot forming processes.

Tribology, Friction, Contact Heat Transfer, Thermography, Glass Forming

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: VU Anh Tuan, GRUNWALD Tim, BERGS Thomas, A novel method to investigate tribological behaviors under transient temperatures using Pin-on-Cylinder tribometer and IR-thermography in glass forming, Materials Research Proceedings, Vol. 41, pp 1315-1324, 2024

DOI: https://doi.org/10.21741/9781644903131-146

The article was published as article 146 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] H. Kreilkamp, A.T. Vu, O. Dambon, F. Klocke, Replicative manufacturing of complex lighting optics by non-isothermal glass molding, in: D.H. Krevor (Eds.), Polymer Optics and Molded Glass Optics: Design, Fabrication, and Materials 2016, SPIE, 2016, 99490B. https://doi.org/10.1117/12.2235848
[2] H. Kreilkamp, A.T. Vu, O. Dambon, N.F. Klocke, Non‐Isothermal Glass Molding of Complex Led Optics, in: S.K. Sundaram (Ed.), 77th Conf. on Glass Problems, Wiley, 2017, pp. 141–149. https://doi.org/10.1002/9781119417507.ch13
[3] A.T. Vu, G. Liu, H. Kreilkamp, O. Dambon, F. Klocke, Numerical modeling-based design of the newly developed nonisothermal glass molding process for complex glass optics, in: Glass Service (Ed.), 13th International Seminar on Furnace Design – Operation & Process Simulation, Czech Republic, 2015, p.376–390.
[4] B. Ananthasayanam, D. Joshi, M. Stairiker, M. Tardiff, K.C. Richardson, P.F. Joseph, High temperature friction characterization for viscoelastic glass contacting a mold, Journal of Non-Crystalline Solids 385 (2014) 100–110. https://doi.org/10.1016/j.jnoncrysol.2013.11.007
[5] P. Mosaddegh, S. Akbarzadeh, M. Zareei, H. Reiszadeh, Tribological behavior of BK7 optical glass at elevated temperatures, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 233 (2019) 580–592. https://doi.org/10.1177/1350650118788756
[6] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, Machine learning-based predictive modeling of contact heat transfer, Int. Journal of Heat and Mass Transfer 174 (2021) 121300. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121300
[7] A. Sarhadi, J.H. Hattel, H.N. Hansen, Evaluation of the viscoelastic behaviour and glass/mould interface friction coefficient in the wafer based precision glass moulding, Journal of Materials Processing Technology 214 (2014) 1427–1435. https://doi.org/10.1016/j.jmatprotec.2014.02.008
[8] P. Mosaddegh, J.C. Ziegert, Friction measurement in precision glass molding: An experimental study, Journal of Non-Crystalline Solids 357 (2011) 3221–3225. https://doi.org/10.1016/j.jnoncrysol.2011.05.012
[9] J. Zhou, H. Xu, C. Zhu, W. Ai, X. Liu, K. Liu, High-temperature friction characteristics of N-BK7 glass and their correlation with viscoelastic loss modulus, Ceramics International 47 (2021) 21414–21424. https://doi.org/10.1016/j.ceramint.2021.04.151
[10] T.D. Pallicity, A.T. Vu, K. Ramesh, P. Mahajan, G. Liu, O. Dambon, Birefringence measurement for validation of simulation of precision glass molding process, J Am Ceram Soc 100 (2017) 4680–4698. https://doi.org/10.1111/jace.15010
[11] A.T. Vu, T. Helmig, A.N. Vu, Y. Frekers, T. Grunwald, R. Kneer, T. Bergs, Numerical and experimental determinations of contact heat transfer coefficients in nonisothermal glass molding, J Am Ceram Soc 103 (2020) 1258–1269. https://doi.org/10.1111/jace.16756
[12] F. Zemzemi, J. Rech, W. Ben Salem, A. Dogui, P. Kapsa, Identification of a friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steels, Journal of Materials Processing Technology 209 (2009) 3978–3990. https://doi.org/10.1016/j.jmatprotec.2008.09.019
[13] A.T. Vu, A.N. Vu, G. Liu, T. Grunwald, O. Dambon, F. Klocke, T. Bergs, Experimental investigation of contact heat transfer coefficients in nonisothermal glass molding by infrared thermography, J Am Ceram Soc 102 (2019) 2116–2134. https://doi.org/10.1111/jace.16029
[14] R. Hild, D. Trauth, P. Mattfeld, S. Bastürk, T. Brögelmann, N. Kruppe, K. Bobzin et al., Trockenumformung strukturierter Halbzeuge aus 16MnCr5 und 42CrMo4*/Dry forming of surface structured workpiece made of 16MnCr5 and 42CrMo4 – Determination of friction shear stress by means of a pin-on-cylinder Tribometer, wt 106 (2016) 712–718. https://doi.org/10.37544/1436-4980-2016-10-38
[15] A.T. Vu, A.N. Vu, T. Grunwald, T. Bergs, Modeling of thermo‐viscoelastic material behavior of glass over a wide temperature range in glass compression molding, J Am Ceram Soc 103 (2020) 2791–2807. https://doi.org/10.1111/jace.16963
[16] A.T. Vu, T. Grunwald, T. Bergs, Thermo-viscoelastic Modeling of Nonequilibrium Material Behavior of Glass in Nonisothermal Glass Molding, Proc. Manufacturing 47 (2020) 1561–1568. https://doi.org/10.1016/j.promfg.2020.04.350
[17] A.T. Vu, H. Kreilkamp, O. Dambon, F. Klocke, Nonisothermal glass molding for the cost-efficient production of precision freeform optics, Opt. Eng 55 (2016) 71207. https://doi.org/10.1117/1.OE.55.7.071207
[18] A.T. Vu, P.A. Vogel, A. Siva Subramanian, T. Grunwald, T. Bergs, Real-Time Quality Control in Thin Glass Forming Using Infrared Thermography and Deep Learning, KEM 926 (2022) 2312–2321. https://doi.org/10.4028/p-5w9vr9
[19] C. Fieberg, R. Kneer, Determination of thermal contact resistance from transient temperature measurements, International Journal of Heat and Mass Transfer 51 (2008) 1017–1023. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.004
[20] M.N. Ozisik, H. Orlande, A.J. Kassab, Inverse Heat Transfer: Fundamentals and Applications, Applied Mechanics Reviews 55 (2002) B18-B19. https://doi.org/10.1115/1.1445337
[21] A.T. Vu, R.d.l.A. Avila Hernandez, T. Grunwald, T. Bergs, Modeling nonequilibrium thermoviscoelastic material behaviors of glass in nonisothermal glass molding, J Am Ceram Soc 105 (2022) 6799–6815. https://doi.org/10.1111/jace.18605
[22] V.L. Popov, Contact Mechanics and Friction, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
[23] P. Chizhik, M. Friedrichs, D. Dietzel, A. Schirmeisen, Tribological Analysis of Contacts Between Glass and Tungsten Carbide Near the Glass Transition Temperature, Tribol Lett 68 (2020). https://doi.org/10.1007/s11249-020-01363-0