Inverse estimation of material model parameters using Bayesian data assimilation

Inverse estimation of material model parameters using Bayesian data assimilation

YAMANAKA Akinori, SUDA Michihiko, SUEKI Sae, SASAKI Kengo, FUNAMOTO Ryuki

download PDF

Abstract. This study proposes a new method for the inverse estimation of the parameters included in material models from full-field measurement data that are obtained using the digital image correlation method. This approach is based on data assimilation according to the Bayes’ theorem (Bayesian data assimilation). In this study, we demonstrate the assimilation of experimental data obtained from uniaxial tensile, forming, and fracture tests of aluminum alloys into elastoplastic finite element and phase-field crack propagation simulations. The proposed method allows the simultaneous estimation of multiple material model parameters. The Bayesian data assimilation is a promising methodology for estimating the parameters of different material models and constructing digital twins of material deformation.

Keywords
Bayesian Data Assimilation, Digital Image Correlation, Material Model

Published online 4/24/2024, 6 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: YAMANAKA Akinori, SUDA Michihiko, SUEKI Sae, SASAKI Kengo, FUNAMOTO Ryuki, Inverse estimation of material model parameters using Bayesian data assimilation, Materials Research Proceedings, Vol. 41, pp 1190-1195, 2024

DOI: https://doi.org/10.21741/9781644903131-132

The article was published as article 132 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. Grédiac, E. Toussaint, F. Pierron, Special virtual fields for the direct determination of material parameters with the virtual fields method. 2––Application to in-plane properties, Int. J. Solids Struct. 39 (2002) 2707-2730. https://doi.org/10.1016/S0020-7683(02)00128-2
[2] K.T. Kavanagh, R.W. Clough, Finite element applications in the characterization of elastic solids, Int. J. Solids Struct. 7 (1971) 11-23. https://doi.org/10.1016/0020-7683(71)90015-1
[3] Y. Zhang, A. Yamanaka, S. Cooreman, T. Kuwabara, S. Coppieters, Inverse identification of plastic anisotropy through multiple non-conventional mechanical experiments, International Journal of Solids and Structures, Vol. 285 (2023) 112534. https://doi.org/10.1016/j.ijsolstr.2023.112534
[4] K. Sasaki, A. Yamanaka, S. Ito, H. Nagao, Data Assimilation for Phase-field Models based on the Ensemble Kalman Filter, Comput. Mater. Sci., 141 (2018) 141-152. https://doi.org/10.1016/j.commatsci.2017.09.025
[5] A. Yamanaka, Y. Maeda, K. Sasaki, Ensemble Kalman filter-based data assimilation for three-dimensional multi-phase-field model: Estimation of anisotropic grain boundary properties, Mater. Design, 165, (2019), 107577. https://doi.org/10.1016/j.matdes.2018.107577
[6] K. Takahashi, A. Yamanaka, Quantitative three-dimensional phase-field modeling of dendritic solidification coupled with local ensemble transform Kalman filter, Comput. Mater. Sci., 190 (2021) 110296. https://doi.org/10.1016/j.commatsci.2021.110296
[7] W. Lahoz, B. Khattatov, R. Ménard, Data Assimilation: Making Sense of Observations, Springer, Germany, 2010. https://doi.org/10.1007/978-3-540-74703-1
[8] G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res. Oceans, 99 (1994) 10143-10162. https://doi.org/10.1029/94JC00572
[9] A. Ishii, A. Yamanaka, Y. Okada, A. Yamamoto, Estimation of solid-state sintering and material parameters using phase-field modeling and ensemble four-dimensional variational method, Model. Simul. Mater. Sci. Eng., 29 (2021) 065012. https://doi.org/10.1088/1361-651X/ac13cd
[10] S. Sueki, A. Ishii, S. Coppieters, A. Yamanaka, Inverse characterization of a material model using an ensemble-based four-dimensional variational method, Int. J. Solids Struct., 279 (2023) 112350. https://doi.org/10.1016/j.ijsolstr.2023.112350
[11] A. Ishii, A. Yamamoto, A. Yamanaka, DMC-TPE: Tree-Structured Parzen Estimator-Based Efficient Data Assimilation Method for Phase-Field Simulation of Solid-State Sintering, Sci. Technol. Adv. Mater. Methods, 3 (2023) 2239133
https://doi.org/10.1080/27660400.2023.2239133
[12] S. Sueki, A. Ishii and A. Yamanaka, Bayesian data assimilation for inverse material modelling using 3D-digital image correlation measurement, Proceedings of JSME International Conference on Materials and Processing 2022, Paper #Tu-3B-3.
[13] D. Solav, K.M. Moerman, A.M. Jaeger, K. Genovese, H.M. Herr, IEEE Access, 6 (2018) 30520-30535. https://doi.org/10.1109/ACCESS.2018.2843725
[14] H. Takizawa, T. Kuwabara, K. Oide, J. Yoshida, Development of the subroutine library ‘UMMDp’ for anisotropic yield function commonly applicable to commercial FEM codes, J. Phys. Conf. Ser., 734 (2016), 032028. https://doi.org/10.1088/1742-6596/734/3/032028
[15] S. Sueki, A. Ishii, A. Yamanaka, Inverse Estimation of Material Model Parameters Using Digital Image Correlation and Ensemble-based Four-dimensional Variational Methods, J. Jpn. Soc. Technol. Plast., 64 (2023) 195-201. https://doi.org/10.9773/sosei.64.195
[16] Z. Khalil, A.Y. Elghazouli, E. Martínez-Pañeda, A generalised phase field model for fatigue crack growth in elastic-plastic solids with an efficient monolithic solver, Comput. Methods Appl. Mech. Eng., 388 (2022) 114286. http://dx.doi.org/10.1016/j.cma.2021.114286