The Role of Rare Earths in Fluid Catalytic Cracking (FCC) Catalyst


The Role of Rare Earths in Fluid Catalytic Cracking (FCC) Catalyst

Aaron Akah

Rare earth oxides enhance catalyst activity and prevent the loss of acid sites during the FCC unit operation, especially when feed with high metal content is used. This chapter reviews the effects of rare earth elements on the structure, activity, and stability of FCC catalysts. It also looks into the mechanism of catalyst deactivation by vanadium and how rare earths are used to combat this. The objective is to elucidate the interaction of vanadium species with the zeolite component of the FCC catalysts and to show the role of rare earth elements in countering the deleterious effects of vanadium. The recycle of spent FCC catalyst with a focus on rare earth element recovery is also outlined.

FCC Catalyst, Rare Earth, Vanadium Trap, Zeolites

Published online 6/5/2024, 45 pages

Citation: Aaron Akah, The Role of Rare Earths in Fluid Catalytic Cracking (FCC) Catalyst, Materials Research Foundations, Vol. 164, pp 298-342, 2024


Part of the book on Rare Earth

[1] Swift, T.K., M.G. Moore, H.R. Rose-Glowacki, and E. Sanchez, The Economic Benefits of the North American Rare Earths Industry. 2014, Rare Earth Technology Alliance. p. 1-32.
[2] Goonan, T.G., Rare Earth Elements-End Use and Recyclability, in Scientific Investigations Report 2011-5094. 2011, U.S. Department of the Interior, U.S. Geological Survey. p. 1-22.
[3] Curtis, N., Rare earths, we can touch them everyday. Lynas Presentation in JP Morgan Australia Corporate Access Days, 27-28 September 2010. 2010: New York.
[4] Jurd, B. and J. Nolde Lanthanum oxide product stewardship summary.
[5] Yung, Y. and K. Bruno, Low rare earth catalysts for FCC operations. 2012: p. 1-10.
[6] Humphries, M., Rare Earth Elements: The Global Supply Chain, in CRS Report for Congress. 2013, Congressional Research Service, R41347. p. 1-31.
[7] Alonso, E., A.M. Sherman, T.J. Wallington, M.P. Everson, F.R. Field, R. Roth, and R.E. Kirchain, Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies. Environmental Science & Technology, 2012. 46(6): p. 3406-3414.
[8] Hatch, G.P., Dynamics in the Global Market for Rare Earths. Elements, 2012. 8(5): p. 341-346.
[9] Akah, A., Application of rare earths in fluid catalytic cracking: A review. Journal of Rare Earths, 2017. 35(10): p. 941-956.
[10] Trovarelli, A., C. de Leitenburg, M. Boaro, and G. Dolcetti, The utilization of ceria in industrial catalysis. Catal. Today, 1999. 50(2): p. 353-367.
[11] Occelli, M.L. and P. Ritz, The effects of Na ions on the properties of calcined rare-earths Y (CREY) zeolites. Appl. Catal. A. Gen, 1999. 183(1): p. 53-59.
[12] Pine, L.A., Vanadium-catalyzed destruction of USY zeolites. J. Catal., 1990. 125(2): p. 514-524.
[13] de la Puente, G., E.F. Souza-Aguiar, F.M.a. Zanon Zotin, V.L. Doria Camorim, and U. Sedran, Influence of different rare earth ions on hydrogen transfer over Y zeolite. Appl. Catal. A. Gen, 2000. 197(1): p. 41-46.
[14] Du, J., Z. Li, Y. Wang, Z. Da, J. Long, and M. He, Development of structure stabilized SSY zeolite. Stud. Surf. Sci. Catal., 2004. 154, Part C: p. 2309-2315.
[15] Lemos, F., F. Ramoˆa Ribeiro, M. Kern, G. Giannetto, and M. Guisnet, Influence of lanthanum content of LaHY catalysts on their physico-chemical and catalytic properties. Appl. Catal. A., 1988. 39: p. 227-237.
[16] Liu, C., X. Gao, Z. Zhang, H. Zhang, S. Sun, and Y. Deng, Surface modification of zeolite Y and mechanism for reducing naphtha olefin formation in catalytic cracking reaction. Appl. Catal. A. Gen, 2004. 264(2): p. 225-228.
[17] Sousa-Aguiar, E.F., F.E. Trigueiro, and F.M.Z. Zotin, The role of rare earth elements in zeolites and cracking catalysts. Catal. Today, 2013. 218-219: p. 115-122.
[18] Vogt, E.T.C. and B.M. Weckhuysen, Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev., 2015. 44(20): p. 7342-7370.
[19] Wallenstein, D., K. Schäfer, and R.H. Harding, Impact of rare earth concentration and matrix modification in FCC catalysts on their catalytic performance in a wide array of operational parameters. Appl. Catal. A. Gen, 2015. 502: p. 27-41.
[20] Wormsbecher, R., W.-C. Cheng, and D. Wallenstein, Role of the Rare Earth Elements in Fluid Catalytic Cracking. GRACE DAVISON CATALAGRAM, 2010. 108 p. 19-26.
[21] Yu, S.Q., H.P. Tian, Y.X. Zhu, Z.Y. Dai, and J. Long, Mechanism of rare earth cations on the stability and acidity of Y zeolites. Wuli Huaxue Xuebao/ Acta Physico – Chimica Sinica, 2011. 27(11): p. 2528-2534.
[22] Zhan, W., Y. Guo, X. Gong, Y. Guo, Y. Wang, and G. Lu, Current status and perspectives of rare earth catalytic materials and catalysis. Chinese Journal of Catalysis, 2014. 35(8): p. 1238-1250.
[23] Dougan, T.J., U. Alkemade, B. Lakhanpal, and L.T. Boock, New vanadium trap proven in commercial trials. Oil.Gas.J, 1994. 92(39): p. 81-91.
[24] Fei, R., L. Qianqian, and Z. Yuxia, Performance of FCC Catalyst Improved with Vanadium Trapping Components. China Petroleum Processing and Petrochemical Technology, 2014. 16(2): p. 8-11.
[25] Diddams, P., M. Evans, and R. Fletcher. Unconventional Means of Increasing Propylene Yield in Residue Operations. Paper ID : 20100362. in Petrotech-2010. 2010. New Delhi, India.
[26] Deng, C., J. Zhang, L. Dong, M. Huang, L. Bin, G. Jin, J. Gao, F. Zhang, M. Fan, L. Zhang, and Y. Gong, The effect of positioning cations on acidity and stability of the framework structure of Y zeolite. Scientific Reports, 2016. 6: p. 23382.
[27] Yang, S.-J., Y.-W. Chen, and L. Chiuping, The interaction of vanadium and nickel in USY zeolite. Zeolites, 1995. 15(1): p. 77-82.
[28] Yang, S.-J., Y.-W. Chen, and C. Li, Vanadium-nickel interaction in REY zeolite. Appl. Catal. A. Gen, 1994. 117(2): p. 109-123.
[29] Yang, S.-J., Y.-W. Chen, and C. Li, Metal-resistant FCC catalysts: effect of matrix. Appl. Catal. A. Gen, 1994. 115(1): p. 59-68.
[30] Moulijn, J.A., M. Makkee, and A.E. van Diepen, Chemical Process Technology. 2013: Wiley.
[31] Gao, X. and W.T. Owens, Process For Metal Recovery From Catalyst Waste, US Patent No. 20120156116A1. 2012.
[32] Akah, A. and M. Al-Ghrami, Maximizing propylene production via FCC technology. Appl Petrochem Res, 2015. 5(4): p. 377-392.
[33] Couch, K.A., J.P. Glavin, D.A. Wegerer, and J.A. Qafisheh FCC propylene production. Catalysis & Additives: Fluid Catalytic Cracking Propylene Maximisation, 2007. Q3, 33-43.
[34] Perego, C. and R. Millini, Porous materials in catalysis: challenges for mesoporous materials. Chem. Soc. Rev., 2013. 42(9): p. 3956-3976.
[35] Silverman, L.D., W.S. Winkler, J.A. Tiethof, and A. Witoshkin, Matrix Effects in Catalytic Cracking, in NPRA Meeting. 1986, Engelhard Corporation: Los Angeles, California.
[36] Von Ballmoos, R. and C.-M.T. Hayward, Matrix vs Zeolite Contributions to the Acidity of Fluid Cracking Catalysts. Stud. Surf. Sci. Catal., 1991. 65: p. 171-183.
[37] Gamero M, P., C. Maldonado M, J.C. Moreno M, O. Guzman M, E. Mojica M, and R. Gonzalez S, Stability of an FCC catalyst matrix for processing gas oil with resid. Stud. Surf. Sci. Catal., 1997. 111: p. 375-382.
[38] Humphries, A. and J.R. Wilcox, Zeolite components and matrix composition determine FCC catalyst performance. Journal Name: Oil Gas J.; (United States); Journal Volume: 87:6, 1989: p. Medium: X; Size: Pages: 45-50.
[39] Al-Khattaf, S., The Influence of Alumina on the Performance of FCC Catalysts during Hydrotreated VGO Catalytic Cracking. Energy & Fuels, 2002. 17(1): p. 62-68.
[40] Mao, R.L.V., N. Al-Yassir, and D.T.T. Nguyen, Experimental evidence for the pore continuum in hybrid catalysts used in the selective deep catalytic cracking of n-hexane and petroleum naphthas. Microporous Mesoporous Mater., 2005. 85(1-2): p. 176-182.
[41] Yan, H.T. and R.L.V. Mao, Hybrid catalysts used in the Catalytic Steam Cracking process (CSC): Influence of the pore characteristics and the surface acidity properties of the ZSM-5 zeolite-based component on the overall catalytic performance. Appl. Catal. A. Gen, 2010 375: p. 63-69.
[42] Hargreaves, J.S.J. and A.L. Munnoch, A survey of the influence of binders in zeolite catalysis. Catalysis Science & Technology, 2013. 3 p. 1165–1171.
[43] O’Connor, P. and A.P. Humphies, Accessibility of functional sites in FCC. Prepr. – Am. Chem. Soc., Div. Pet. Chem., 1993. 38: p. 598-603.
[44] Mann, R. and U.A. El-Nafaty, Probing internal structures of FCC catalyst particles: Fromparallel bundles to fractals. Stud. Surf. Sci. Catal., 1996. 100: p. 355-364.
[45] Kuehler, C.W., R. Jonker, P. Imhof, S.J. Yanik, and P. O’Connor, Catalyst assembly technology in FCC. Part II: The influence of fresh and contaminant-affected catalyst structure on FCC performance. Stud. Surf. Sci. Catal., 2001. 134: p. 311-332.
[46] López-Isunza, F., N. Moreno-Montiel, R. Quintana-Solórzano, J.C. Moreno-Mayorga, and F. Hernández-Beltrán, Modelling diffusion, cracking reactions and deactivation in FCC Catalysts. Stud. Surf. Sci. Catal., 2001. 133: p. 509-514.
[47] Lu, Y., M. He, J. Song, and X. Shu, Active site accessibility of resid cracking catalysts. Stud. Surf. Sci. Catal., 2001. 134: p. 209-217.
[48] O’Connor, P., P. Imhof, and S.J. Yanik, Catalyst assembly technology in FCC. Part I: A review of the concept, history and developments. Stud. Surf. Sci. Catal., 2001. 134: p. 299-310.
[49] Stockwell, D.M., X. Liu, P. Nagel, P.J. Nelson, T.A. Gegan, and C.F. Keweshan, Distributed Matrix Structures-novel technology for high performance in short contact time FCC. Stud. Surf. Sci. Catal., 2004. 149: p. 257-285.
[50] Rana, M.S., V. Sámano, J. Ancheyta, and J.A.I. Diaz, A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007. 86(9): p. 1216-1231.
[51] Sadeghbeigi, R., Fluid Catalytic Cracking Handbook: Design, Operation and Troubleshooting of FCC Facilities. 2nd ed. 2000, Austin, Texas: Gulf Publishing Company.
[52] Rase, H.F., Handbook of Commercial Catalysts: Heterogeneous Catalysts. 2000, New York: CRC Press LLC.
[53] Andreu, P., Development of catalysts for the fluid catalytic cracking process: An example of CYTED-D program. Catal. Lett., 1993. 22(1-2): p. 135-146.
[54] Miale, J.N., N.Y. Chen, and P.B. Weisz, Catalysis by crystalline aluminosilicates: IV. Attainable catalytic cracking rate constants, and superactivity. J. Catal., 1966. 6(2): p. 278-287.
[55] Li, X., B. Shen, Q. Guo, and J. Gao, Effects of large pore zeolite additions in the catalytic pyrolysis catalyst on the light olefins production. Catal. Today, 2007. 125(3-4): p. 270-277.
[56] Zhao, X. and T.G. Roberie, ZSM-5 Additive in Fluid Catalytic Cracking. 1. Effect of Additive Level and Temperature on Light Olefins and Gasoline Olefins. Ind. Eng. Chem. Res., 1999. 38(10): p. 3847-3853.
[57] Arandes, J.M., I. Torre, M.J. Azkoiti, J. Ereña, M. Olazar, and J. Bilbao, HZSM-5 Zeolite As Catalyst Additive for Residue Cracking under FCC Conditions. Energy & Fuels, 2009. 23(9): p. 4215-4223.
[58] Buchanan, J.S., The chemistry of olefins production by ZSM-5 addition to catalytic cracking units. Catal. Today, 2000. 55(3): p. 207-212.
[59] Degnan, T.F., G.K. Chitnis, and P.H. Schipper, History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous Mesoporous Mater., 2000. 35-36(0): p. 245-252.
[60] Abul-Hamayel, M.A., A.M. Aitani, and M.R. Saeed, Enhancement of Propylene Production in a Downer FCC Operation using a ZSM-5 Additive. Chemical Engineering & Technology, 2005. 28(8): p. 923-929.
[61] Akah, A., M. Al-Ghrami, M. Saeed, and M.A.B. Siddiqui, Reactivity of naphtha fractions for light olefins production. International Journal of Industrial Chemistry, 2017. 8(2): p. 221-233.
[62] Arandes, J.M., I. Abajo, I. Fernández, M.J. Azkoiti, and J. Bilbao, Effect of HZSM-5 Zeolite Addition to a Fluid Catalytic Cracking Catalyst. Study in a Laboratory Reactor Operating under Industrial Conditions. Ind. Eng. Chem. Res., 2000. 39(6): p. 1917-1924.
[63] Siddiqui, M.A.B., A.M. Aitani, M.R. Saeed, N. Al-Yassir, and S. Al-Khattaf, Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives. Fuel, 2011. 90(2): p. 459-466.
[64] Claude, A., Holding the Key, in HydrocarbonProcessing. 2008, Hydrocarbon Engineering: p. 1-7.
[65] Larocca, M., H. De Lasa, H. Farag, and S. Ng, Cracking catalysts deactivation by nickel and vanadium contaminants. Ind. Eng. Chem. Res., 1990. 29(11): p. 2181-2191.
[66] Schubert, P.F. and C.A. Altomare, Effects of Ni and V in Catalysts on Contaminant Coke and Hydrogen Yields. ACS Symposium Series: Fluid Catalytic Cracking, 1988. 375(375): p. 182-194.
[67] Bayraktar, O. and E.L. Kugler, Effect of pretreatment on the performance of metal-contaminated fluid catalytic cracking (FCC) catalysts. Appl. Catal. A. Gen, 2004. 260(1): p. 119-124.
[68] Etim, U.J., B. Xu, Z. Zhang, Z. Zhong, P. Bai, K. Qiao, and Z. Yan, Improved catalytic cracking performance of USY in the presence of metal contaminants by post-synthesis modification. Fuel, 2016. 178: p. 243-252.
[69] Jeon, H.J., S.K. Park, and S.I. Woo, Evaluation of vanadium traps occluded in resid fluidized catalytic cracking (RFCC) catalyst for high gasoline yield. Appl. Catal. A. Gen, 2006. 306: p. 1-7.
[70] Sandoval-Díaz, L.-E., J.-M. Martínez-Gil, and C.A. Trujillo, The combined effect of sodium and vanadium contamination upon the catalytic performance of USY zeolite in the cracking of n-butane: Evidence of path-dependent behavior in Constable-Cremer plots. J. Catal., 2012. 294: p. 89-98.
[71] Wallenstein, D., T. Roberie, and T. Bruhin, Review on the deactivation of FCC catalysts by cyclic propylene steaming. Catal. Today, 2007. 127(1-4): p. 54-69.
[72] Wallenstein, D., R.H. Harding, J. Witzler, and X. Zhao, Rational assessment of FCC catalyst performance by utilization of micro-activity testing. Appl. Catal. A. Gen, 1998. 167(1): p. 141-155.
[73] Young, G.W., Chapter 8 Realistic Assessment of FCC Catalyst Performance in the Laboratory. Stud. Surf. Sci. Catal., 1993. 76: p. 257-292.
[74] Boock, L.T. and X. Zhao, Recent advances in FCC catalyst evaluations : MAT vs. DCR pilot plant results. Fluid Cracking Catalysts, ed. M.L. Occelli. 1996, Washington, DC, US: American Chemical Society.
[75] Corma, A. and L. Sauvanaud, FCC testing at bench scale: New units, new processes, new feeds. Catal. Today, 2013. 218-219: p. 107-114.
[76] Catalyst deactivation model used to select laboratory procedures for fcc catalyst testing, in Catalyst Reports, Section 2: FCCU Catalyst Testing and Sampling BASF:
[77] Kostaras, K., C. Ziogou, A. Lappas, and S. Voutetakis, Design engineering, implementation and control of a flexible cyclic deactivation unit. Chemical Engineering Transactions, 2009. 18: p. 563-568.
[78] Hettinger, W.P., Catalysis challenges in fluid catalytic cracking: a 49 year personal account of past and more recent contributions and some possible new and future directions for even further improvement. Catal. Today, 1999. 53(3): p. 367-384.
[79] Ihli, J., R.R. Jacob, M. Holler, M. Guizar-Sicairos, A. Diaz, J.C. da Silva, D. Ferreira Sanchez, F. Krumeich, D. Grolimund, M. Taddei, W.C. Cheng, Y. Shu, A. Menzel, and J.A. van Bokhoven, A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts. Nature Communications, 2017. 8(1): p. 809.
[80] Fernández, M.L., A. Lacalle, J. Bilbao, J.M. Arandes, G. de la Puente, and U. Sedran, Recycling Hydrocarbon Cuts into FCC Units. Energy & Fuels, 2002. 16(3): p. 615-621.
[81] Devard, A., G. de la Puente, F. Passamonti, and U. Sedran, Processing of resid-VGO mixtures in FCC: Laboratory approach. Applied Catalysis A: General, 2009. 353(2): p. 223-227.
[82] Devard, A., G. de la Puente, and U. Sedran, Laboratory evaluation of the impact of the addition of resid in FCC. Fuel Processing Technology, 2009. 90(1): p. 51-55.
[83] Lengyel, A., S. Magyar, and J. Hancsók, Upgrading of Delayed Coker Light Naphtha in a Crude Oil Refinery Petroleum & Coal 2009. 51(2): p. 80-90.
[84] Torre, I., J.M. Arandes, M.J. Azkoiti, M. Olazar, and J. Bilbao, Cracking of Coker Naphtha with Gas−Oil. Effect of HZSM-5 Zeolite Addition to the Catalyst. Energy & Fuels, 2007. 21(1): p. 11-18.
[85] Ruiz-Martínez, J., A.M. Beale, U. Deka, M.G. O’Brien, P.D. Quinn, J.F.W. Mosselmans, and B.M. Weckhuysen, Correlating Metal Poisoning with Zeolite Deactivation in an Individual Catalyst Particle by Chemical and Phase-Sensitive X-ray Microscopy. Angewandte Chemie (International Ed. in English), 2013. 52(23): p. 5983-5987.
[86] Meirer, F., S. Kalirai, D. Morris, S. Soparawalla, Y. Liu, G. Mesu, J.C. Andrews, and B.M. Weckhuysen, Life and death of a single catalytic cracking particle. Science Advances, 2015. 1(3): p. e1400199.
[87] Wallenstein, D., D. Farmer, J. Knoell, C.M. Fougret, and S. Brandt, Progress in the deactivation of metals contaminated FCC catalysts by a novel catalyst metallation method. Appl. Catal. A. Gen, 2013. 462-463: p. 91-99.
[88] Tangstad, E., A. Andersen, E.M. Myhrvold, and T. Myrstad, Catalytic behaviour of nickel and iron metal contaminants of an FCC catalyst after oxidative and reductive thermal treatments. Appl. Catal. A. Gen, 2008. 346(1-2): p. 194-199.
[89] Reynolds, J.G., NICKEL IN PETROLEUM REFINING. Pet. Sci. Technol., 2001. 19(7-8): p. 979-1007.
[90] Roncolatto, R.E. and Y.L. Lam, Effect of vanadium on the deactivation of fcc catalysts. Brazilian Journal of Chemical Engineering, 1998. 15(2): p.
[91] Wormsbecher, R.F., A.W. Peters, and J.M. Maselli, Vanadium poisoning of cracking catalysts: Mechanism of poisoning and design of vanadium tolerant catalyst system. J. Catal., 1986. 100(1): p. 130-137.
[92] Trujillo, C.A., U.N. Uribe, P.-P. Knops-Gerrits, L.A. Oviedo A, and P.A. Jacobs, The Mechanism of Zeolite Y Destruction by Steam in the Presence of Vanadium. J. Catal., 1997. 168(1): p. 1-15.
[93] Xu, M., X. Liu, and R.J. Madon, Pathways for Y Zeolite Destruction: The Role of Sodium and Vanadium. J. Catal., 2002. 207(2): p. 237-246.
[94] Lerner, B. and M. Deeba, Improved Methods for Testing and Assessing Deactivation from Vanadium Interaction with Fluid Catalytic Cracking Catalyst. ACS Symposium Series: Deactivation and Testing of Hydrocarbon-Processing Catalysts, 1996. 634: p. 296-311.
[95] O’Connor, P., T. Takatsuka, and G.L. Woolery, Deactivation and Testing of Hydrocarbon-Processing Catalysts. ACS Symposium Series. Vol. 634. 1996: American Chemical Society. 468.
[96] Harding, R.H., A.W. Peters, and J.R.D. Nee, New developments in FCC catalyst technology. Appl. Catal. A. Gen, 2001. 221(1-2): p. 389-396.
[97] Wormsbecher, R.F., W.-C. Cheng, G. Kim, and R.H. Harding, Vanadium Mobility in Fluid Catalytic Cracking. ACS Symposium Series: Deactivation and Testing of Hydrocarbon-Processing Catalysts, 1996. 634: p. 283-295.
[98] Pope, M.T., Comprehensive Coordination Chemistry, ed. G. Wilkinson. Vol. 3. 1987: Pergamon, Oxford. p1026.
[99] Huifang, P., W. Xiaofeng, T. Aijun, S. Zhihong, and Z. Gaoshan, The design of vanadium trapping system for fcc catalysts. Chin.J.Chem.Eng., 1996. V4(2): p. 120-124.
[100] Cristiano-Torres, D.V., Y. Osorio-Pérez, L.A. Palomeque-Forero, L.E. Sandoval-Díaz, and C.A. Trujillo, The action of vanadium over Y zeolite in oxidant and dry atmosphere. Appl. Catal. A. Gen, 2008. 346(1-2): p. 104-111.
[101] Sorokina, T.P., L.A. Buluchevskaya, O.V. Potapenko, and V.P. Doronin, Conversion of nickel and vanadium porphyrins under catalytic cracking conditions. Petroleum Chemistry, 2010. 50(1): p. 51-55.
[102] Dechaine, G.P. and M.R. Gray, Chemistry and Association of Vanadium Compounds in Heavy Oil and Bitumen, and Implications for Their Selective Removal. Energy & Fuels, 2010. 24(5): p. 2795-2808.
[103] Woltermann, G.M., G. Dodwell, and B. Lerner, Modern Cracking Catalyst and Residue Processing Challenges, in NPRA Annual Meeting, March 17-19, 1996. 1996, San Antonio, Texas.
[104] Graaf, B.d., Y. Tang, J. Oberlin, and P. Diddams Shale crudes and FCC: A mismatch from heaven? Processing Shale Feedstocks 2014.
[105] Osorio Pérez, Y., L.A.P. Forero, D.V.C. Torres, and C.A. Trujillo, Brønsted acid site number evaluation using isopropylamine decomposition on Y-zeolite contaminated with vanadium in a simultaneous DSC-TGA analyzer. Thermochim. Acta, 2008. 470(1-2): p. 36-39.
[106] Etim, U.J., B. Xu, R. Ullah, and Z. Yan, Effect of vanadium contamination on the framework and micropore structure of ultra stable Y-zeolite. J. Colloid Interface Sci., 2016. 463: p. 188-198.
[107] Hagiwara, K., T. Ebihara, N. Urasato, S. Ozawa, and S. Nakata, Effect of vanadium on USY zeolite destruction in the presence of sodium ions and steam-studies by solid-state NMR. Appl. Catal. A. Gen, 2003. 249(2): p. 213-228.
[108] Maholland, M.K. Improving FCC catalyst performance. Catalysis, 2006.
[109] Trujillo, C.A., U.N. Uribe, and L.A.O. Aguiar, Vanadium traps for catalyst for catalytic cracking. 2000, Google Patents.
[110] Huai-Ping, W., W. Fang-Zhu, and W. Wen-Ru Effect of vanadium poisoning and vanadium passivation on the structure and properties of rehy zeolite and fcc catalyst. ACS Fuels 2000. 45, 623-628.
[111] Fe’ron, B.a., P. Gallezot, and M. Bourgogne, Hydrothermal aging of cracking catalysts: V. Vanadium passivation by rare-earth compounds soluble in the feedstock. J. Catal., 1992. 134(2): p. 469-478.
[112] Jeon, H.J., S.K. Park, and S.I. Woo, Evaluation of vanadium traps occluded in resid fluidized catalytic cracking (RFCC) catalyst for high gasoline yield. Appl. Catal. A. Gen, 2006. 306: p. 1-7.
[113] Myrstad, T., Effect of vanadium on octane numbers in FCC-naphtha. Appl. Catal. A. Gen, 1997. 155(1): p. 87-98.
[114] Wang, H.-P., F.-Z. Wang, and W.-R. Wu, Effect of vanadium poisoning and vanadium passivation on the structure and properties of rehy zeolite and FCC catalyst ACS Division of Fuel Chemistry, Preprints, 2000. 45(3): p. 623-627.
[115] Baugis, G.L., H.F. Brito, W. de Oliveira, F. Rabello de Castro, and E.F. Sousa-Aguiar, The luminescent behavior of the steamed EuY zeolite incorporated with vanadium and rare earth passivators. Microporous Mesoporous Mater., 2001. 49(1-3): p. 179-187.
[116] Biswas, J. and I.E. Maxwell, Recent process- and catalyst-related developments in fluid catalytic cracking. Appl. Catal. A., 1990. 63(1): p. 197-258.
[117] Li, B., S. Li, N. Li, C. Liu, X. Gao, and X. Pang, Structure and acidity of REHY Zeolite in FCC catalyst. Chinese Journal of Catalysis, 2005. 26(4): p. 301-306.
[118] Corma, A., V. Fornes, J.B. Monton, and A.V. Orchilles, Structural and cracking properties of REHY zeolites. Activity, selectivity, and catalyst-decay optimization for n-heptane cracking. Industrial & Engineering Chemistry Product Research and Development, 1986. 25(2): p. 231-238.
[119] Du, X., H. Zhang, G. Cao, L. Wang, C. Zhang, and X. Gao, Effects of La2O3, CeO2 and LaPO4 introduction on vanadium tolerance of USY zeolites. Microporous Mesoporous Mater., 2015. 206: p. 17-22.
[120] Kugler, E.L. and D.P. Leta, Nickel and vanadium on equilibrium cracking catalysts by imaging secondary ion mass spectrometry. J. Catal., 1988. 109(2): p. 387-395.
[121] Corma, A. and J.M. López Nieto, Chapter 185 The use of rare-earth-containing zeolite catalysts, in Handbook on the Physics and Chemistry of Rare Earths. 2000, Elsevier. p. 269-313.
[122] Baillie, C. and R. Schiller Zero and low rare earth FCC catalysts. PTQ Q4, 2011.
[123] Du, X., H. Zhang, X. Gao, Z. He, and Z. Li, Effect of nickel and vanadium on structure and catalytic performance of FCC catalyst. Shiyou Xuebao, Shiyou JiagongActa Petrolei Sinica (Petroleum Processing Section), 2015. 31(5): p. 1063-1068.
[124] Du, X., X. Li, H. Zhang, and X. Gao, Kinetics study and analysis of zeolite Y destruction. Chinese Journal of Catalysis, 2016. 37(2): p. 316-323.
[125] Moreira, C.R., M.H. Herbst, P.R. de la Piscina, J.-L.G. Fierro, N. Homs, and M.M. Pereira, Evidence of multi-component interaction in a V-Ce-HUSY catalyst: Is the cerium-EFAL interaction the key of vanadium trapping? Microporous Mesoporous Mater., 2008. 115(3): p. 253-260.
[126] Moreira, C.R., N. Homs, J.L.G. Fierro, M.M. Pereira, and P. Ramírez de la Piscina, HUSY zeolite modified by lanthanum: Effect of lanthanum introduction as a vanadium trap. Microporous Mesoporous Mater., 2010. 133(1-3): p. 75-81.
[127] Cerqueira, H.S., G. Caeiro, L. Costa, and F. Ramôa Ribeiro, Deactivation of FCC catalysts. J. Mol. Catal. A: Chem., 2008. 292(1-2): p. 1-13.
[128] Maugé, F., P. Gallezot, J.-C. Courcelle, P. Engelhard, and J. Grosmangin, Hydrothermal aging of cracking catalysts. II. Effect of steam and sodium on the structure of LaHY zeolites. Zeolites, 1986. 6(4): p. 261-266.
[129] Lemos, F., F.R. Ribeiro, M. Kern, G. Giannetto, and M. Guisnet, Influence of the cerium content of CeHY catalysts on their physicochemical and catalytic properties. Appl. Catal. A., 1987. 29(1): p. 43-54.
[130] Topete, O., C. Baillie, and R. Schiller, Optimizing FCC Operations in a High Rare-Earth Cost World: Commercial: Update on Grace Davison’s Low and Zero Rare-Earth FCC Catalysts, in GRACE DAVISON CATALAGRAM. p. 2-12.
[131] Ismail, S., Fluid Catalytic Cracking (FCC) Catalyst Optimization to Cope with High Rare Earth Oxide Price Environment, in BASF Technical Note. 2011, BASF:
[132] Scherzer, J., Octane-Enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects. Catalysis Reviews, 1989. 31(3): p. 215-354.
[133] Rahimi, N. and R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl. Catal. A. Gen, 2011. 398: p. 1-17.
[134] Ding, F., S.H. Ng, C. Xu, and S. Yui, Reduction of light cycle oil in catalytic cracking of bitumen-derived crude HGOs through catalyst selection. Fuel Process. Technol., 2007. 88(9): p. 833-845.
[135] Shimada, I., K. Takizawa, H. Fukunaga, N. Takahashi, and T. Takatsuka, Catalytic cracking of polycyclic aromatic hydrocarbons with hydrogen transfer reaction. Fuel, 2015. 161: p. 207-214.
[136] Gao, X., Z. Qin, B. Wang, X. Zhao, J. Li, H. Zhao, H. Liu, and B. Shen, High silica REHY zeolite with low rare earth loading as high-performance catalyst for heavy oil conversion. Appl. Catal. A. Gen, 2012. 413-414: p. 254-260.
[137] Hunger, M., G. Engelhardt, and J. Weitkamp, Solid-state 23Na, 139La, 27Al and 29Si nuclear magnetic resonance spectroscopic investigations of cation location and migration in zeolites LaNaY. Microporous Mater., 1995. 3(4): p. 497-510.
[138] Trigueiro, F.E., D.F.J. Monteiro, F.M.Z. Zotin, and E. Falabella Sousa-Aguiar, Thermal stability of Y zeolites containing different rare earth cations. J. Alloys Compd., 2002. 344(1-2): p. 337-341.
[139] BASF, Effects of Rare Earth Oxides in FCC Catalysts, in Catalyst Reports: Section 4- The Effects of FCC Catalyst Characteristics on FCC Yields and Product Properties. BASF Catalysts.
[140] Shu, Y., A. Travert, R. Schiller, M. Ziebarth, R. Wormsbecher, and W.-C. Cheng, Effect of Ionic Radius of Rare Earth on USY Zeolite in Fluid Catalytic Cracking: Fundamentals and Commercial Application. Top. Catal., 2015. 58(4): p. 334-342.
[141] Liu, X., S. Liu, and Y. Liu, A potential substitute for CeY zeolite used in fluid catalytic cracking process. Microporous Mesoporous Mater., 2016. 226: p. 162-168.
[142] Du, X., X. Gao, H. Zhang, X. Li, and P. Liu, Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites. Catal. Commun., 2013. 35: p. 17-22.
[143] Schüßler, F., E.A. Pidko, R. Kolvenbach, C. Sievers, E.J.M. Hensen, R.A. van Santen, and J.A. Lercher, Nature and Location of Cationic Lanthanum Species in High Alumina Containing Faujasite Type Zeolites. J. Phys. Chem. C, 2011. 115(44): p. 21763-21776.
[144] Nery, J.G., Y.P. Mascarenhas, T.J. Bonagamba, N.C. Mello, and E.F. Souza-Aguiar, Location of cerium and lanthanum cations in CeNaY and LaNaY after calcination. Zeolites, 1997. 18(1): p. 44-49.
[145] Nery, J.G., M.V. Giotto, Y.P. Mascarenhas, D. Cardoso, F.M.Z. Zotin, and E.F. Sousa-Aguiar, Rietveld refinement and solid state NMR study of Nd-, Sm-, Gd-, and Dy-containing Y zeolites. Microporous Mesoporous Mater., 2000. 41(1-3): p. 281-293.
[146] Moreira, C.R., M.M. Pereira, X. Alcobé, N. Homs, J. Llorca, J.L.G. Fierro, and P. Ramírez de la Piscina, Nature and location of cerium in Ce-loaded Y zeolites as revealed by HRTEM and spectroscopic techniques. Microporous Mesoporous Mater., 2007. 100(1-3): p. 276-286.
[147] Scherzer, J., Chapter 5 Correlation Between Catalyst Formulation and Catalytic Properties. Stud. Surf. Sci. Catal., 1993. 76: p. 145-182.
[148] Huang, J., Y. Jiang, V.R. Reddy Marthala, Y.S. Ooi, J. Weitkamp, and M. Hunger, Concentration and acid strength of hydroxyl groups in zeolites La,Na-X and La,Na-Y with different lanthanum exchange degrees studied by solid-state NMR spectroscopy. Microporous Mesoporous Mater., 2007. 104(1-3): p. 129-136.
[149] Moscou, L. and M. Lakeman, Acid sites in rare-earth exchanged Y-zeolites. J. Catal., 1970. 16(2): p. 173-180.
[150] Bolton, A.P., The nature of rare-earth exchanged Y zeolites. J. Catal., 1971. 22(1): p. 9-15.
[151] Kovacheva, P., C. Bezoukhanova, and C. Dimitrov, Acidity and catalytic activity of rare-earth containing X zeolites. React. Kinet. Catal. Lett., 1978. 8(4): p. 495-499.
[152] Noda, T., K. Suzuki, N. Katada, and M. Niwa, Combined study of IRMS-TPD measurement and DFT calculation on Brønsted acidity and catalytic cracking activity of cation-exchanged Y zeolites. J. Catal., 2008. 259(2): p. 203-210.
[153] Suzuki, K., T. Noda, N. Katada, and M. Niwa, IRMS-TPD of ammonia: Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. J. Catal., 2007. 250(1): p. 151-160.
[154] Wang, Y., Y. Cui, Y. Suo, and W. Zhang, Influences of cerium on structure and catalytic performance of n-heptane hydroisomerization of Ni-HPW/MCM-48. Journal of Rare Earths, 2015. 33(1): p. 46-55.
[155] Martins, A., J.M. Silva, C. Henriques, F.R. Ribeiro, and M.F. Ribeiro, Influence of rare earth elements La, Nd and Yb on the acidity of H-MCM-22 and H-Beta zeolites. Catal. Today, 2005. 107-108: p. 663-670.
[156] Lee, J., U.G. Hong, S. Hwang, M.H. Youn, and I.K. Song, Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: Effect of lanthanum content. Fuel Process. Technol., 2013. 109: p. 189-195.
[157] Xiaoning, W., Z. Zhen, X. Chunming, D. Aijun, Z. Li, and J. Guiyuan, Effects of Light Rare Earth on Acidity and Catalytic Performance of HZSM-5 Zeolite for Catalytic Cracking of Butane to Light Olefins. Journal of Rare Earths, 2007. 25(3): p. 321-328.
[158] Roelofsen, J.W., H. Mathies, R.L. de Groot, P.C.M. van Woerkom, and H.A. Gaur, Effect of Rare Earth Loading in Y-Zeolite on its Dealumination during Thermal Treatment. Stud. Surf. Sci. Catal., 1986. 28: p. 337-344.
[159] Amano, T., J. Wilcox, C. Pouwels, and T. Matsuura Process and catalysis factors to maximise propylene output. Catalysts & Additives, 2012. 139, 1-11.
[160] Abbot, J. and B.W. Wojciechowski, Hydrogen transfer reactions in the catalytic cracking of paraffins. J. Catal., 1987. 107(2): p. 451-462.
[161] Corma, A., M. Faraldos, and A. Mifsud, Influence of the level of dealumination on the selective adsorption of olefins and paraffins and its implication on hydrogen transfer reactions during catalytic cracking on USY zeolites. Appl. Catal. A., 1989. 47(1): p. 125-133.
[162] Des Rochettes, B.M., C. Marcilly, C. Gueguen, and J. Bousquet, Kinetic study of hydrogen transfer of olefins under catalytic cracking conditions. Appl. Catal. A., 1990. 58(1): p. 35-52.
[163] Sertić-Bionda, K., V. Kuzmić, and M. Jednačak, The influence of process parameters on catalytic cracking LPG fraction yield and composition. Fuel Process. Technol., 2000. 64(1-3): p. 107-115.
[164] Zhao, X. and R.H. Harding, ZSM-5 Additive in Fluid Catalytic Cracking. 2. Effect of Hydrogen Transfer Characteristics of the Base Cracking Catalysts and Feedstocks. Ind. Eng. Chem. Res., 1999. 38(10): p. 3854-3859.
[165] Zhang, L., Q. Li, Y. Qin, X. Zhang, X. Gao, and L. Song, Investigation on the mechanism of adsorption and desorption behavior in cerium ions modified Y-type zeolite and improved hydrocarbons conversion. Journal of Rare Earths, 2016. 34(12): p. 1221-1227.
[166] BASF, The Effects of FCC Catalyst Characteristics on FCC Yields and Product Properties in Catalyst Reports. Section 4: .
[167] Keyvanloo, K. and M. Sadeqzadeh. Effect of Element Modifications on Catalytic Performance of Zeolites. in Proceedings of the World Congress on Engineering and Computer Science 2008, WCECS 2008. 2008. San Francisco, USA.
[168] Vierheilig, A.A., Methods of recovering rare earth elements, US Patent No. 8216532B1 2011.
[169] Furimsky, E., Spent refinery catalysts: Environment, safety and utilization. Catal. Today, 1996. 30(4): p. 223-286.
[170] Silva, J.S.A., T.d.A. Maranhão, F.J.S.d. Oliveira, A.J. Curtius, and V.L.A. Frescura, Determination of rare earth elements in spent catalyst samples from oil refinery by dynamic reaction cell inductively coupled plasma mass spectrometry. Journal of the Brazilian Chemical Society, 2014. 25: p. 1062-1070.
[171] Ye, S., Y. Jing, Y. Wang, and W. Fei, Recovery of rare earths from spent FCC catalysts by solvent extraction using saponified 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA). Journal of Rare Earths, 2017. 35(7): p. 716-722.
[172] Ferella, F., V. Innocenzi, and F. Maggiore, Oil refining spent catalysts: A review of possible recycling technologies. Resources, Conservation and Recycling, 2016. 108: p. 10-20.