Rare Earth Element (REE) Insights for Health and Diagnostic Imaging


Rare Earth Element (REE) Insights for Health and Diagnostic Imaging

R. Ramakrishna Reddy, Anthapu Pranav

The medical industry is rapidly expanding its usage of rare earth elements (REE) in cutting-edge technologies including molecular imaging and radiotherapies. Because of its advantageous optical qualities, REE are included into a wide range of imaging modalities, including but not limited to X-ray, MRI, CT, ultrasound, nuclear medicine, and positron emission tomography. MRI is an imaging technique widely used in the clinic for the diagnosis of disease and visualization of injuries, which utilizes magnetic fields and electromagnetic radiation to create images of the physiology within the body or clinical analysis. It has various advantages, including quick detection time, large detection depth, no surgery need, etc. This review provides an overview of rare earths and their prospective applications in medical diagnostic imaging and other areas. Some rare earth elements may have use in biomedical imaging, cancer therapy, and image processing, all of which are briefly reviewed. The use of REE into health and medical applications is now well established. However, much of the future of diagnostic imaging analysis could depend on these paramagnetic elements.

REE in Pharmaceuticals, Biomedical Imaging Techniques, Rare Earth Elements in Cancer Diagnosis, Image Processing Tools

Published online 6/5/2024, 27 pages

Citation: R. Ramakrishna Reddy, Anthapu Pranav, Rare Earth Element (REE) Insights for Health and Diagnostic Imaging, Materials Research Foundations, Vol. 164, pp 230-256, 2024

DOI: https://doi.org/10.21741/9781644903056-6

Part of the book on Rare Earth

[1] Wang J, Li S,2022, Applications of rare earth elements in cancer: Evidence mapping and scient metric analysis. Front Med (Lausanne).;9:946100. PMCID: PMC9399464. https://doi.org/10.3389/fmed.2022.946100
[2] Kostelnik TI, Orbig C ,2019, Radioactive main group and rare earth metals for imaging and therapy. Chemical Reviews 119: 902-956. https://doi.org/10.1021/acs.chemrev.8b00294
[3] Townley HE ,2013, Applications of the rare earth elements in cancer imaging and therapy. Current Nanoscience. https://doi.org/10.2174/15734137113099990063
[4] https://www.metaltechnews.com/story/2020/04/29/tech-metals/rare-earth-metals-see-new-medical-uses/217. https://pubs.usgs.gov/fs/2014/3078/pdf/fs2014-3078.pdf).
[5] Weissleder R, Nahrendorf M, 2016, Advancing biomedical imaging. Proc Natl Acad Sci U S A., 112:14424-8. https://doi.org/10.1073/pnas.1508524112
[6] Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B., 2020, Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl.;35(2):237-263. Epub 2020 May 19. PMID: 32423319. https://doi.org/10.1177/0885328220924540
[7] Neacsu IA, Stoica AE, Vasile BS, Andronescu E. 2019, Luminescent Hydroxyapatite Doped with Rare Earth Elements for Biomedical Applications. Nanomaterials (Basel).9(2):239. PMID: 30744215; PMCID: PMC6409594. https://doi.org/10.3390/nano9020239
[8] Giese EC, 2018, Rare earth elements: Therapeutic and diagnostic applications in modern medicine, Clinical and Medical Reports, Clin Med Rep, doi: 10.15761/CMR. 1000139, Volume 2(1): 1-2. https://doi.org/10.15761/CMR
[9] Kostova I , 2005 ,Lanthanides as Anticancer Agents. Current Medicinal Chemistry – Anti-Cancer Agents, 5: 591-602. https://doi.org/10.2174/156801105774574694
[10] https://www.metaltechnews.com/story/2020/04/29/tech-metals/rare-earth-metals-see-new-medical-uses/217.html
[11] Ascenzi, P., Bettinelli, M., Boffi, A. et al. Rare earth elements (REE) in biology and medicine. Rend. Fis. Acc. Lincei 31, 821-833 (2020). https://doi.org/10.1007/s12210-020-00930-w. https://doi.org/10.1007/s12210-020-00930-w
[12] Juanjuan Gao, Liang Feng, Baolong Chen, Biao Fu, Min Zhu, The role of rare earth elements in bone tissue engineering scaffolds – A review, Composites Part B: Engineering, Volume 235, 2022,109758,ISSN 1359-8368,https://doi.org/10.1016/j.compositesb.2022.109758. https://doi.org/10.1016/j.compositesb.2022.109758
[13] Matthäus C, Bird B, Miljković M, Chernenko T, Romeo M, Diem M. 2008; Chapter 10: Infrared and Raman microscopy in cell biology. Methods Cell Biol. 89:275-308. doi: 10.1016/S0091-679X(08)00610-9. PMID: 19118679; PMCID: PMC2830543. https://doi.org/10.1016/S0091-679X(08)00610-9
[14] Geraldes CFGC. 2020, Introduction to Infrared and Raman-Based Biomedical Molecular Imaging and Comparison with Other Modalities. Molecules. ;25(23):5547. doi: 10.3390/molecules25235547. PMID: 33256052; PMCID: PMC7731440. https://doi.org/10.3390/molecules25235547
[15] Riaz A, Kulik L, Lewandowski RJ, Ryu RK, Giakoumis Spear G, Mulcahy MF, Abecassis M, Baker T, Gates V, Nayar R, Miller FH, Sato KT, Omary RA, Salem R: 2009, Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology; 49:1185-1193. https://doi.org/10.1002/hep.22747
[16] Rastrelli, M.; Tropea, S.; Rossi, C.R.; Alaibac, M., 2014, Melanoma: Epidemiology, risk factors, pathogenesis, diagnosis and classification. Vivo, 28, 1005-1011, PMID: 25398793.
[17] Mcausland, T.M.; Vloten, J.P.V.; Santry, L.A.; Guilleman, M.M.; Rghei, A.D.; Ferreira, E.M.; Ingrao, J.C.; Arulanandam, R.; Major, P.P.; Susta, L.; et al. 2021, Combining vanadyl sulfate with Newcastle disease virus potentiates rapid innate immune-mediated regression with curative potential in murine cancer models. Mol. Ther. Oncolytics , 20, 306-324. https://doi.org/10.1016/j.omto.2021.01.009
[18] Gumerova, N.I.; Rompel, A. 2021 , Interweaving disciplines to advance chemistry: Applying polyoxometalates in biology. Inorg. Chem, 60, 6109-6114. https://doi.org/10.1021/acs.inorgchem.1c00125
[19] Moskalik K, Kozlow A, Demin E, Boiko E. 2010 , Powerful neodymium laser radiation for the treatment of facial carcinoma: 5 year follow-up data. Eur J Dermatol. 2010 Nov-Dec;20(6):738-42. doi: 10.1684/ejd..1055. Epub 2010 Nov 5. PMID: 21056940.
[20] Makita, M., Manabe, E., Kurita, T. et al. 2020, Moving a neodymium magnet promotes the migration of a magnetic tracer and increases the monitoring counts on the skin surface of sentinel lymph nodes in breast cancer. BMC Med Imaging 20, 58. https://doi.org/10.1186/s12880-020-00459-2
[21] Li Y, Wang R. 2022, Efficacy comparison of pulsed dye laser vs microsecond 1064-nm neodymium: yttrium-aluminum-garnet laser in the treatment of rosacea: A meta-analysis. Front Med (Lausanne). Published online January 20. https://doi.org/10.3389/fmed.2021.798294
[22] Noar JH, Evans RD. Rare earth magnets in orthodontics: an overview. Br J Orthod. 1999 Mar;26(1):29-37. https://doi.org/10.1093/ortho/26.1.29
[23] Yuksel C, Ankarali S, Aslan Yuksel N. 2018, The use of neodymium magnets in healthcare and their effects on health. North Clin Istanb ,5(3):268-273.
[24] Blechman, A. M. (1985). Magnetic force systems in orthodontics: clinical results of a pilot study. American Journal of Orthodontics, 87(3), 201-210. https://doi.org/10.1016/0002-9416(85)90041-7
[25] Yao Cai, Yuqing Wang, Tongwei Zhang, and Yongxin Pan, 2020, Gadolinium-Labeled Ferritin Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging of Tumors, ACS Applied Nano Materials ,3 (9), 8771-8783. https://doi.org/10.1021/acsanm.0c01563
[26] Fatima, A.; Ahmad, M.W.;Al Saidi, A.K.A.; Choudhury, A.;Chang, Y.; Lee, G.H. 2021, Recent Advances in Gadolinium Based Contrast Agents for Bioimaging Applications. Nanomaterials, 11, 2449. https://doi.org/10.3390/nano11092449
[27] Md. Wasi Ahmad, Wenlong Xu, Sung June Kim, Jong Su Baeck, Yongmin Chang, Ji Eun Bae,Kwon Seok Chae, Ji Ae Park, Tae Jeong Kim and Gang Ho Lee, 2015, Potential dual imaging nanoparticle:Gd2O3nanoparticle . Scientific reports, 5 : 8549. https://doi.org/10.1038/srep08549
[28] Sartor O, Reid RH, Hoskin PJ, Quick DP, Ell PJ, Coleman RE, Kotler JA, Freeman LM, Olivier P, 2004, Quadramet 424Sm10/11 Study Group, Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology 63:940-945. https://doi.org/10.1016/j.urology.2004.01.034
[29] Das T, Banerjee S. Radiopharmaceuticals for metastatic bone pain palliation: available options in the clinical domain and their comparisons. Clin Exp Metas. 2017; 34:1-10. https://doi.org/10.1007/s10585-016-9831-9
[30] Hong E, Liu L, Bai L, Xia C, Gao L, Zhang L, Wang B. 2019, Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Mater Sci Eng C Mater Biol Appl. https://doi.org/10.1016/j.msec.2019.110097
[31] Gu M, Li W, Jiang L, Li X. 2022, Recent progress of rare earth doped hydroxyapatite nanoparticles: Luminescence properties, synthesis and biomedical applications. Acta Biomater. 2022 Aug; 148:22-43. Epub. PMID: 35675891. https://doi.org/10.1016/j.actbio.2022.06.006
[32] Xiao Zhang, Shuqing Hea, Bingbing Dinga, Chunrong Qua etal; Cancer Cell Membrane-Coated Rare Earth Doped Nanoparticles for Tumor Surgery Navigation in NIR-II Imaging Window, https://www.sciencedirect.com/science/article/pii/S1385894719333741, Manuscript_788726923e1942a5ef920fa02b9a7bba.
[33] Kaczmarek MT, Zabiszak M, Nowak M, Jastrzab R. 2018, Lanthanides: schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coordinat Chem Rev. 370:42-5. https://doi.org/10.1016/j.ccr.2018.05.012
[34] Yu, Z.; He, Y.; Schomann, T.; Wu, K.; Hao, Y.; Suidgeest, E.; Zhang, H.; Eich, C.; Cruz, L.J. 2022, Achieving Effective Multimodal Imaging with Rare-Earth Ion-Doped CaF2 Nanoparticles. Pharmaceutics, 14, 840. https://doi.org/10.3390/pharmaceutics14040840
[35] Wei, Z., Liu, Y., Li, B. et al. 2022. Rare-earth based materials: an effective toolbox for brain imaging, therapy, monitoring and neuromodulation. Light Sci Appl 11, 175. https://doi.org/10.1038/s41377-022-00864-y
[36] Bingzhu Zheng, Jingyue Fan,Bing Chen, Xian Qin, Juan Wang , 2022 ,Rare-Earth Doping in Nanostructured Inorganic Materials ,:Chem.Rev.,122,5519−5603. https://doi.org/10.1021/acs.chemrev.1c00644
[37] Zhen Feng Yu, Christina Eich and Luis J. Cruz, 2020, Recent Advances in Rare-Earth-Doped Nanoparticles for NIR-II Imaging and Cancer Theranostics , Front. Chem.,Sec. Nanoscience. https://doi.org/10.3389/fchem.2020.00496
[38] Liu, L., Wang, S., Zhao, B., Pei, P., Fan, Y., Li, X., et al., 2018. Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew. Chem. Int. Ed. 57, 7518-7522. https://doi.org/10.1002/anie.201802889
[39] Chistoserdova L (2016) Lanthanides: new life metals? World J Microbiol Biotechnol 32:138. https://doi.org/10.1007/s11274-016-2088-2
[40] B. Qi Fan, Xiaoxia Cui, Haitao Guo, Yantao Xu, Guangwei Zhang,Bo Peng , 2020, Application of rare earth-doped nanoparticles in biological imaging and tumor treatment ,Journal of Biomaterials Applications, Volume 35, Issue 2. https://doi.org/10.1177/0885328220924540
[41] C. Jain, A., Fournier, P.G.J., Mendoza-Lavaniegos, V. et al. 2018 ,Functionalized rare earth-doped nanoparticles for breast cancer nano diagnostic using fluorescence and CT imaging. J Nanobiotechnol 16, 26. https://doi.org/10.1186/s12951-018-0359-9
[42] D. Townley E. Helen, 2013 , Applications of the Rare Earth Elements in Cancer Imaging and Therapy, Current Nanoscience ; 9(5). https://doi.org/10.2174/15734137113099990063
[43] E. Pranjita Zantyea,, Fiona Fernandesa,, Sutapa Roy Ramananb and Meenal Kowshika, 2019 ,Rare Earth Doped Hydroxyapatite Nanoparticles for in vitro Bioimaging Applications Current Physical Chemistry, 9, 94-109 . https://doi.org/10.2174/1877946809666190828104812
[44] F. Qu Z, Shen J, Li Q, Xu F, Wang F, Zhang X, Fan C. 2020 , Near-IR emissive rare-earth nanoparticles for guided surgery. Theranostics.;10(6):2631-2644. PMID: 32194825; PMCID: PMC7052904. https://doi.org/10.7150/thno.40808
[45] Umar AA, Atabo SM. 2019 ,A review of imaging techniques in scientific research/clinical diagnosis. MOJ Anat & Physiol. ,6(5):175-183. https://doi.org/10.15406/mojap.2019.06.00269
[46] Fabian Michelangeli, 2019, Imaging the unimaginable: Medical imaging in the realm of photography, Clinics in Dermatology, Volume 37, Issue 1, Pages 38-46, ISSN 0738-081X, https://doi.org/10.1016/j.clindermatol.2018.09.008
[47] Victor I. Mikla and Victor V. Mikla, 2014, Medical Imaging Technology , ISBN , 978-0-12-417021-6 , Elsevier In. https://doi.org/10.1016/C2012-0-06086-3
[48] https://radiopaedia.org/articles/ultrasound-introduction; https://my.clevelandclinic.org/health/diagnostics/4995-ultrasound.
[49] https://www.medicalnewstoday.com/articles/146309#uses; https://www.news-medical.net/health/Magnetic-Resonance-Imaging-(MRI)-Overview.aspx; https://www.medicinenet.com/mri_scan/article.htm
[50] https://radiopaedia.org/articles/positron-emission-tomography
[51] Sibylle I. Ziegler, 2005, Positron Emission Tomography: Principles, Technology, and Recent Developments, Nuclear Physics A, Volume 752, Pages 679-687, ISSN 0375-9474, https://doi.org/10.1016/j.nuclphysa.2005.02.067
[52] https://my.clevelandclinic.org/health/diagnostics/4902-nuclear-medicine-imaging.
[53] Pat Zanzonico, 2012, Principles of Nuclear Medicine Imaging: Planar, SPECT, PET, Multi-modality, and Autoradiography Systems, Radiat Res, 177 (4): 349-364. https://doi.org/10.1667/RR2577.1
[54] Mettler FA, Wiest PW, Locken JA, Kelsey CA. 2000, CT scanning: patterns of use and dose. J Radiol Prot.; 20:353-359. https://doi.org/10.1088/0952-4746/20/4/301
[55] A.C. Kak, M. Slaney, 1988, Principles of Computerized Tomographic Imaging, IEEE Press, New York, pp. 104-107
[56] Ahmed B. Salem Salamh, Abdulrauf A. Salamah and Halil Ibrahim Akyüz, A Study of a New Technique of the CT Scan View and Disease Classification Protocol Based on Level Challenges in Cases of Coronavirus Disease, Radiology Research and Practice, Volume 2021 | Article ID 5554408. https://doi.org/10.1155/2021/5554408
[57] Shier Nee Saw a, Kwan Hoong Ng, 2022, Current challenges of implementing artificial intelligence in medical imaging, Physica Medica, 100, 12-17. https://doi.org/10.1016/j.ejmp.2022.06.003
[58] Avanzo M, Porzio M, Lorenzon L, Milan L, Sghedoni R, Russo G, et al., 2021 Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy. Physica Medica: European Journal of Medical Physics ;83: 221-41. https://doi.org/10.1016/j.ejmp.2021.04.010
[59] Berger, M., Yang, Q., Maier, A., 2018. X-ray Imaging. In: Maier, A., Steidl, S., Christlein, V., Hornegger, J. (eds) Medical Imaging Systems. Lecture Notes in Computer Science(), vol 11111. Springer, Cham. https://doi.org/10.1007/978-3-319-96520-8_7. https://doi.org/10.1007/978-3-319-96520-8_7
[60] https://www.nibib.nih.gov/science-education/science-topics/x-rays
[61] Selin veronica A,Dr. J.G.R. Sathiaseelan , 2021, Survey Of Image Processing Techniques In Medical Image Analysis And Identification , Turkish Journal of Computer and Mathematics Education Vol.12No.13, 1110-1121 .
[62] Kasban, Hany, M. A. M. El-Bendary, and D. H. Salama. 2015 “A comparative study of medical imaging techniques.” International Journal of Information Science and Intelligent System 4, no. 2 : 37-5
[63] Chinmayi, P., Agilandeeswari, L., Prabukumar, M.2018., Survey of Image Processing Techniques in Medical Image Analysis: Challenges and Methodologies. In: Abraham, A., Cherukuri, A., Madureira, A., Muda, A. (eds) Proceedings of the Eighth International Conference on Soft Computing and Pattern Recognition (SoCPaR 2016). SoCPaR 2016. Advances in Intelligent Systems and Computing, vol 614. Springer, Cham. https://doi.org/10.1007/978-3-319-60618-7_45
[64] Emami, T., Janney, S.S., Chakravarty, S.2019. Elements of Medical Image Processing. In: Paul, S. (eds) Biomedical Engineering and its Applications in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-13-3705-5_20