A Luminescent Pathway for Anti-Counterfeiting of Currency and Forensic Applications


A Luminescent Pathway for Anti-Counterfeiting of Currency and Forensic Applications

Payal P. Pradhan, D. Haranath

Nowadays, issues regarding counterfeit and forensic applications are gradually increasing. For instance, banking, insurance sectors, the drug industry, and university degrees, including different expensive commercial products, are facing counterfeit hitches with fake products. Duplication of the products could be done by simple methods and the replicated product looks genuine that nobody could doubt. So, to prevent these kinds of offensive activities, latent security ink has a great advantage to write secret codes or symbols. Similarly, the effective identification of latent fingerprints in forensic science is crucial for investigations at the crime scene. Latent fingerprints are generally accomplished on many surfaces. However, extraction of these from porous, non-porous, and colored surfaces is not so easy. To resolve the issue, organic/inorganic dyes, pigments, and nano phosphor materials have been used conventionally, due to the characteristics of nano-size, variable colour emission, afterglow, and high chemical stability, which consent the fingerprint recognition on any type of surface for forensic applications. This comprehensive book chapter includes a brief introduction to luminescence, properties of lanthanides, and lanthanide complexes. Extensive literature survey including synthesis and application of lanthanide-based nano phosphors in the areas of anticounterfeit and latent fingerprint extractions. Amongst the numerous techniques, which have been developed to combat counterfeits, visualization of latent fingerprints, security ink, and printing, innovative luminescent materials have been broadly utilized for various applications not only due to high-throughput production, facile design and simple operation but also due to exceptional security properties. Moreover, this chapter provides a systematic comprehensive overview of the latest developments in Ln-doped luminescent materials, plasmonic nanomaterials, quantum dots (QDs) and metal-organic frameworks for their possible use in the above high in demand applications.

Photoluminescence, Latent Fingerprint, Anti-Counterfeiting, Security Ink

Published online 6/5/2024, 76 pages

Citation: Payal P. Pradhan, D. Haranath, A Luminescent Pathway for Anti-Counterfeiting of Currency and Forensic Applications, Materials Research Foundations, Vol. 164, pp 67-142, 2024

DOI: https://doi.org/10.21741/9781644903056-2

Part of the book on Rare Earth

[1] J. R. Partington, “Lignum nephriticum,” Ann. Sci., vol. 11, no. 1, pp. 1–26, Mar. 1955, https://doi.org/10.1080/00033795500200015
[2] B. Valeur and M. N. Berberan-Santos, “A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory,” J. Chem. Educ., vol. 88, no. 6, pp. 731–738, Jun. 2011, https://doi.org/10.1021/ed100182h
[3] A. U. Acuña and F. Amat-Guerri, “Early History of Solution Fluorescence: The Lignum nephriticum of Nicolás Monardes BT – Fluorescence of Supermolecules, Polymers, and Nanosystems,” M. N. Berberan-Santos, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 3–20. https://doi.org/10.1007/4243_2007_006
[4] A. U. Acuña, “More thoughts on the narra tree fluorescence [1],” J. Chem. Educ., vol. 84, no. 2, p. 231, 2007, https://doi.org/10.1021/ed084p231
[5] “J. Chem. Educ. 2006, 83, 655–661,” J. Chem. Educ., vol. 83, no. 8, p. 1138, Aug. 2006, https://doi.org/10.1021/ed083p1138.2
[6] S. E. Braslavsky, “Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006),” vol. 79, no. 3, pp. 293–465, 2007, https://doi.org/doi:10.1351/pac200779030293
[7] P. R. Selvin, T. M. Rana, and J. E. Hearst, “Luminescence Resonance Energy Transfer,” J. Am. Chem. Soc., vol. 116, no. 13, pp. 6029–6030, Jun. 1994, https://doi.org/10.1021/ja00092a088
[8] S. Schietinger, L. Menezes, B. Lauritzen, and O. Benson, “No Title,” Nano Lett., vol. 9, p. 2477, 2009
[9] A. Cha, G. E. Snyder, P. R. Selvin, and F. Bezanilla, “Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy,” Nature, vol. 402, no. 6763, pp. 809–813, 1999, https://doi.org/10.1038/45552
[10] A. Beeby et al., “Luminescence imaging microscopy and lifetime mapping using kinetically stable lanthanide(III) complexes.,” J. Photochem. Photobiol. B., vol. 57 2–3, pp. 83–89, 2000
[11] K. V. R. Murthy and H. Virk, “Luminescence Phenomena: An Introduction,” Defect Diffus. Forum, vol. 347, pp. 1–34, Dec. 2013, https://doi.org/10.4028/www.scientific.net/DDF.347.1
[12] H.-S. Qian and Y. Zhang, “Synthesis of Hexagonal-Phase Core−Shell NaYF4 Nanocrystals with Tunable Upconversion Fluorescence,” Langmuir, vol. 24, no. 21, pp. 12123–12125, Nov. 2008, https://doi.org/10.1021/la802343f
[13] A. G. Macedo et al., “Effects of phonon confinement on anomalous thermalization, energy transfer, and upconversion in Ln3+-doped Gd2O3 nanotubes,” Adv. Funct. Mater., vol. 20, no. 4, pp. 624–634, 2010, https://doi.org/10.1002/adfm.200901772
[14] “Advanced Materials – 2010 – Liu – A Strategy to Achieve Efficient Dual‐Mode Luminescence of Eu3 in Lanthanides Doped.pdf.”
[15] Y. Liu, D. Tu, H. Zhu, and X. Chen, “Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications,” Chem. Soc. Rev., vol. 42, no. 16, pp. 6924–6958, 2013, https://doi.org/10.1039/c3cs60060b
[16] W. J. Kim, M. Nyk, and P. N. Prasad, “Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security,” Nanotechnology, vol. 20, no. 18, p. 185301, 2009, https://doi.org/10.1088/0957-4484/20/18/185301
[17] D. E. Wortman and C. A. Morrison, “Energy levels and predicted absorption spectra of rare-earth ions in rare-earth arsenides. Interim report, 1 July-30 September 1992,” United States, 1992. [Online]. Available: https://www.osti.gov/biblio/6941498
[18] C. Jiang, F. Wang, N. Wu, and X. Liu, “Up- and down-conversion cubic zirconia and hafnia nanobelts,” Adv. Mater., vol. 20, no. 24, pp. 4826–4829, 2008, https://doi.org/10.1002/adma.200801459
[19] S. Heer, K. Kömpe, H. U. Güdel, and M. Haase, “Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals,” Adv. Mater., vol. 16, no. 23–24, pp. 2102–2105, 2004, https://doi.org/10.1002/adma.200400772
[20] P. Ghosh and A. Patra, “Tuning of Crystal Phase and Luminescence Properties of Eu3+ Doped Sodium Yttrium Fluoride Nanocrystals,” J. Phys. Chem. C, vol. 112, no. 9, pp. 3223–3231, Mar. 2008, https://doi.org/10.1021/jp7099114
[21] O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, “A four-color colloidal multiplexing nanoparticle system.,” ACS Nano, vol. 2 1, pp. 120–124, 2008
[22] I. M. Clarkson et al., “Experimental assessment of the efficacy of sensitised emission in water from a europium ion, following intramolecular excitation by a phenanthridinyl group,” New J. Chem., vol. 24, no. 6, pp. 377–386, 2000, https://doi.org/10.1039/B001319F
[23] D. Hreniak et al., “Enhancement of luminescence properties of Eu3+:YVO4 in polymeric nanocomposites upon UV excitation,” J. Lumin., vol. 131, no. 3, pp. 473–476, 2011, https://doi.org/https://doi.org/10.1016/j.jlumin.2010.10.028
[24] T. V. U. Gangan, S. Sreenadh, and M. L. P. Reddy, “Visible-light excitable highly luminescent molecular plastic materials derived from Eu3+-biphenyl based β-diketonate ternary complex and poly(methylmethacrylate),” J. Photochem. Photobiol. A Chem., vol. 328, pp. 171–181, 2016, https://doi.org/https://doi.org/10.1016/j.jphotochem.2016.06.005
[25] X. Chen, H. Z. Zhuang, G. K. Liu, S. T. Li, and R. S. Niedbala, “Confinement on energy transfer between luminescent centers in nanocrystals,” J. Appl. Phys., vol. 94, pp. 5559–5565, 2003
[26] F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. van der Tol, and J. W. Verhoeven, “Diazatriphenylene complexes of Eu3+ and Tb3+; promising light-converting systems with high luminescence quantum yields,” J. Photochem. Photobiol. A Chem., vol. 113, no. 2, pp. 141–144, 1998, https://doi.org/https://doi.org/10.1016/S1010-6030(97)00324-9
27] S. I. Klink et al., “A Systematic Study of the Photophysical Processes in Polydentate Triphenylene-Functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ Complexes,” J. Phys. Chem. A, vol. 104, no. 23, pp. 5457–5468, Jun. 2000, https://doi.org/10.1021/jp994286+
[28] E. Brunet, O. Juanes, R. Sedano, and J.-C. Rodríguez-Ubis, “Synthesis of Novel Macrocyclic Lanthanide Chelates Derived from Bis-pyrazolylpyridine,” Org. Lett., vol. 4, no. 2, pp. 213–216, Jan. 2002, https://doi.org/10.1021/ol0169527
[29] J.-F. Mei et al., “A novel photo-responsive europium(iii) complex for advanced anti-counterfeiting and encryption,” Dalt. Trans., vol. 45, no. 13, pp. 5451–5454, 2016, https://doi.org/10.1039/C6DT00346J
[30] M. R. Ganjali, P. Norouzi, T. Alizadeh, and M. Adib, “Application of 8-amino-N-(2-hydroxybenzylidene)naphthyl amine as a neutral ionophore in the construction of a lanthanum ion-selective sensor,” Anal. Chim. Acta, vol. 576, no. 2, pp. 275–282, 2006, https://doi.org/https://doi.org/10.1016/j.aca.2006.06.037
[31] N. Sabbatini, M. Guardigli, and J.-M. Lehn, “No Title,” Coord. Chem. Rev., vol. 123, p. 201, 1993
[32] A. P. S. Samuel, J. Xu, and K. N. Raymond, “Predicting Efficient Antenna Ligands for Tb(III) Emission,” Inorg. Chem., vol. 48, no. 2, pp. 687–698, Jan. 2009, https://doi.org/10.1021/ic801904s
[33] M. Kawa and J. M. J. Fréchet, “Self-Assembled Lanthanide-Cored Dendrimer Complexes: Enhancement of the Luminescence Properties of Lanthanide Ions through Site-Isolation and Antenna Effects,” Chem. Mater., vol. 10, pp. 286–296, 1998
[34] X. Bai et al., “Size-Dependent Upconversion Luminescence in Er3+/Yb3+-Codoped Nanocrystalline Yttria:  Saturation and Thermal Effects,” J. Phys. Chem. C, vol. 111, no. 36, pp. 13611–13617, Sep. 2007, https://doi.org/10.1021/jp070122e
[35] L. Xu, X. Jiang, K. Liang, M. Gao, and B. Kong, “Frontier luminous strategy of functional silica nanohybrids in sensing and bioimaging: From ACQ to AIE,” Aggregate, vol. 3, no. 1, p. e121, Feb. 2022, https://doi.org/https://doi.org/10.1002/agt2.121
[36] X. Li, F. Zhang, and D. Zhao, “Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure,” Chem. Soc. Rev., vol. 44, no. 6, pp. 1346–1378, 2015, https://doi.org/10.1039/C4CS00163J
[37] H. Dong, L.-D. Sun, and C.-H. Yan, “Energy transfer in lanthanide upconversion studies for extended optical applications,” Chem. Soc. Rev., vol. 44, no. 6, pp. 1608–1634, 2015, https://doi.org/10.1039/C4CS00188E
[38] L. Prodi, E. Rampazzo, F. Rastrelli, A. Speghini, and N. Zaccheroni, “Imaging agents based on lanthanide doped nanoparticles.,” Chem. Soc. Rev., vol. 44, no. 14, pp. 4922–4952, Jul. 2015, https://doi.org/10.1039/c4cs00394b
[39] M.-K. Tsang, G. Bai, and J. Hao, “Stimuli responsive upconversion luminescence nanomaterials and films for various applications,” Chem. Soc. Rev., vol. 44, no. 6, pp. 1585–1607, 2015, https://doi.org/10.1039/C4CS00171K
[40] S. V Eliseeva and J.-C. G. Bünzli, “Lanthanide luminescence for functional materials and bio-sciences.,” Chem. Soc. Rev., vol. 39 1, pp. 189–227, 2010
[41] J.-C. G. Bünzli and S. V Eliseeva, “Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion,” J. Rare Earths, vol. 28, no. 6, pp. 824–842, 2010, https://doi.org/https://doi.org/10.1016/S1002-0721(09)60208-8
[42] B. M. Van Der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys., vol. 11, no. 47, pp. 11081–11095, 2009, https://doi.org/10.1039/b913877c
[43] S. Gai, C. Li, P. Yang, and J. Lin, “Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications,” Chem. Rev., vol. 114, no. 4, pp. 2343–2389, Feb. 2014, https://doi.org/10.1021/CR4001594/ASSET/IMAGES/LARGE/CR-2013-001594_0026.JPEG
[44] S. K. Singh, A. K. Singh, and S. B. Rai, “Efficient dual mode multicolor luminescence in a lanthanide doped hybrid nanostructure: A multifunctional material,” Nanotechnology, vol. 22, no. 27, 2011, https://doi.org/10.1088/0957-4484/22/27/275703
[45] M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Disappearance and recovery of luminescence in Bi3+, Eu 3+ codoped YPO4 nanoparticles due to the presence of water molecules Up to 800 °c,” J. Am. Chem. Soc., vol. 133, no. 9, pp. 2998–3004, Mar. 2011, https://doi.org/10.1021/JA1092437
[46] J.-C. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale, vol. 2, no. 8, pp. 1417–1419, 2010, https://doi.org/10.1039/C0NR00253D
[47] N. Bogdan, F. Vetrone, G. A. Ozin, and J. A. Capobianco, “Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles.,” Nano Lett., vol. 11, no. 2, pp. 835–840, Feb. 2011, https://doi.org/10.1021/nl1041929
[48] H.-X. Mai, Y.-W. Zhang, L.-D. Sun, and C.-H. Yan, “Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals,” J. Phys. Chem. C, vol. 111, no. 37, pp. 13721–13729, Sep. 2007, https://doi.org/10.1021/jp073920d
[49] J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin., vol. 8, no. 4, pp. 341–343, 1974, https://doi.org/https://doi.org/10.1016/0022-2313(74)90006-4
[50] M. N. Luwang, R. S. Ningthoujam, S. K. Srivastava, and R. K. Vatsa, “Preparation of white light emitting YVO4: Ln3+ and silica-coated YVO4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tm3+) nanoparticles by CTAB/n-butanol/hexane/water microemulsion route: Energy transfer and site symmetry studies,” J. Mater. Chem., vol. 21, no. 14, pp. 5326–5337, 2011, https://doi.org/10.1039/C0JM03470C
[51] T.-W. Kim, P.-W. Chung, I. I. Slowing, M. Tsunoda, E. S. Yeung, and V. S.-Y. Lin, “Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells,” Nano Lett., vol. 8, no. 11, pp. 3724–3727, Nov. 2008, https://doi.org/10.1021/nl801976m
[52] C. Liu, H. Wang, X. Zhang, and D. Chen, “Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4nanocrystals with multicolor photoluminescence,” J. Mater. Chem., vol. 19, no. 4, pp. 489–496, 2009, https://doi.org/10.1039/B815682D
[53] P. Hartnagel, S. Ravishankar, B. Klingebiel, O. Thimm, and T. Kirchartz, “Comparing Methods of Characterizing Energetic Disorder in Organic Solar Cells,” Adv. Energy Mater., vol. n/a, no. n/a, p. 2300329, Mar. 2023, https://doi.org/https://doi.org/10.1002/aenm.202300329
[54] B. Fan, C. Chlique, O. Merdrignac-Conanec, X. Zhang, and X. Fan, “Near-Infrared Quantum Cutting Material Er3+/Yb3+ Doped La2O2S with an External Quantum Yield Higher than 100\%,” J. Phys. Chem. C, vol. 116, pp. 11652–11657, 2012
[55] J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev., vol. 115, no. 1, pp. 395–465, Jan. 2015, https://doi.org/10.1021/CR400478F
[56] L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys., vol. 80, pp. 4403–4409, May 1984, https://doi.org/10.1063/1.447218
[57] M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, “The Quantum Mechanics of Larger Semiconductor Clusters (‘Quantum Dots’),” Annu. Rev. Phys. Chem., vol. 41, no. 1, pp. 477–496, Oct. 1990, https://doi.org/10.1146/annurev.pc.41.100190.002401
[58] K. A. S. Fernando et al., “Carbon Quantum Dots and Applications in Photocatalytic Energy Conversion,” ACS Appl. Mater. Interfaces, vol. 7, no. 16, pp. 8363–8376, Apr. 2015, https://doi.org/10.1021/acsami.5b00448
[59] I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater., vol. 4, no. 6, pp. 435–446, 2005, https://doi.org/10.1038/nmat1390
[60] M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol., vol. 19, no. 7, pp. 631–635, 2001, https://doi.org/10.1038/90228
[61] W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, “Luminescent quantum dots for multiplexed biological detection and imaging,” Curr. Opin. Biotechnol., vol. 13, no. 1, pp. 40–46, 2002, https://doi.org/https://doi.org/10.1016/S0958-1669(02)00282-3
[62] J. Zhou, Y. Yang, and C. Zhang, “Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application,” Chem. Rev., vol. 115, no. 21, pp. 11669–11717, Nov. 2015, https://doi.org/10.1021/acs.chemrev.5b00049
[63] J. Zhou, Z. Sheng, H. Han, M. Zou, and C.-X. Li, “Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source,” Mater. Lett., vol. 66, pp. 222–224, 2012
[64] S. Silvi and A. Credi, “Luminescent sensors based on quantum dot-molecule conjugates,” Chem. Soc. Rev., vol. 44, no. 13, pp. 4275–4289, 2015, https://doi.org/10.1039/c4cs00400k
[65] V. I. Klimov, “Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals.,” Annu. Rev. Phys. Chem., vol. 58, pp. 635–673, 2007, https://doi.org/10.1146/annurev.physchem.58.032806.104537
[66] C. Carrillo-Carrión, S. Cárdenas, B. M. Simonet, and M. Valcárcel, “Quantum dots luminescence enhancement due to illumination with UV/Vis light,” Chem. Commun., no. 35, pp. 5214–5226, 2009, https://doi.org/10.1039/b904381k
[67] S. Kang et al., “Simple preparation of graphene quantum dots with controllable surface states from graphite,” RSC Adv., vol. 9, no. 66, pp. 38447–38453, 2019, https://doi.org/10.1039/C9RA07555K
[68] Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” J. Mater. Chem. C, vol. 2, no. 34, pp. 6921–6939, 2014, https://doi.org/10.1039/C4TC00988F
[69] P. G. Luo et al., “Carbon-based quantum dots for fluorescence imaging of cells and tissues,” RSC Adv., vol. 4, no. 21, pp. 10791–10807, 2014, https://doi.org/10.1039/C3RA47683A
[70] L. Cao, M. J. Meziani, S. Sahu, and Y.-P. Sun, “Photoluminescence Properties of Graphene versus Other Carbon Nanomaterials,” Acc. Chem. Res., vol. 46, no. 1, pp. 171–180, Jan. 2013, https://doi.org/10.1021/ar300128j
[71] X. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” J. Am. Chem. Soc., vol. 126, no. 40, pp. 12736–12737, Oct. 2004, https://doi.org/10.1021/ja040082h
[72] Y.-P. Sun et al., “Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence,” J. Am. Chem. Soc., vol. 128, no. 24, pp. 7756–7757, Jun. 2006, https://doi.org/10.1021/ja062677d
[73] S. Y. Lim, W. Shen, and Z. Gao, “Carbon quantum dots and their applications.,” Chem. Soc. Rev., vol. 44, no. 1, pp. 362–381, Jan. 2015, https://doi.org/10.1039/c4cs00269e
[74] K. Krishnamoorthy, M. Veerapandian, K. Yun, and S. Kim, “The chemical and structural analysis of graphene oxide with different degrees of oxidation,” Carbon N. Y., vol. 53, pp. 38–49, 2013
[75] G. Eda et al., “Blue Photoluminescence from Chemically Derived Graphene Oxide,” Adv. Mater., vol. 22, no. 4, pp. 505–509, Jan. 2010, https://doi.org/https://doi.org/10.1002/adma.200901996
[76] T. Gokus et al., “Making Graphene Luminescent by Oxygen Plasma Treatment,” ACS Nano, vol. 3, no. 12, pp. 3963–3968, Dec. 2009, https://doi.org/10.1021/nn9012753
[77] A. P. Demchenko and M. O. Dekaliuk, “Novel fluorescent carbonic nanomaterials for sensing and imaging.,” Methods Appl. Fluoresc., vol. 1, no. 4, p. 42001, Aug. 2013, https://doi.org/10.1088/2050-6120/1/4/042001
[78] J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, and C. Li, “One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light,” New J. Chem., vol. 36, no. 1, pp. 97–101, 2012, https://doi.org/10.1039/c1nj20658c
[79] K. Krishnamoorthy, M. Veerapandian, R. Mohan, and S.-J. Kim, “Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets,” Appl. Phys. A, vol. 106, no. 3, pp. 501–506, 2012, https://doi.org/10.1007/s00339-011-6720-6
[80] S. Y. Lim, W. Shen, and Z. Gao, “Carbon quantum dots and their applications,” Chem. Soc. Rev., vol. 44, no. 1, pp. 362–381, 2015, https://doi.org/10.1039/c4cs00269e
[81] C. Mathioudakis, G. Kopidakis, P. C. Kelires, P. Patsalas, M. Gioti, and S. Logothetidis, “Electronic and optical properties of a-C from tight-binding molecular dynamics simulations,” Thin Solid Films, vol. 482, no. 1, pp. 151–155, 2005, https://doi.org/https://doi.org/10.1016/j.tsf.2004.11.133
[82] A. L. Himaja, P. S. Karthik, and S. P. Singh, “Carbon Dots: The Newest Member of the Carbon Nanomaterials Family,” Chem. Rec., vol. 15, no. 3, pp. 595–615, Jun. 2015, https://doi.org/https://doi.org/10.1002/tcr.201402090
[83] T. A. Tabish and S. Zhang, “Graphene quantum dots: Syntheses, properties, and biological applications,” Compr. Nanosci. Nanotechnol., vol. 1–5, pp. 171–192, 2019, https://doi.org/10.1016/B978-0-12-803581-8.04133-3
[84] X. T. Zheng, A. Ananthanarayanan, K. Q. Luo, and P. Chen, “Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications,” Small, vol. 11, no. 14, pp. 1620–1636, Apr. 2015, https://doi.org/https://doi.org/10.1002/smll.201402648
[85] Z. G. Khan and P. O. Patil, “A comprehensive review on carbon dots and graphene quantum dots based fluorescent sensor for biothiols,” Microchem. J., vol. 157, p. 105011, 2020, https://doi.org/https://doi.org/10.1016/j.microc.2020.105011
[86] A. Cayuela, M. L. Soriano, C. Carrillo-Carrión, and M. Valcárcel, “Semiconductor and carbon-based fluorescent nanodots: the need for consistency,” Chem. Commun., vol. 52, no. 7, pp. 1311–1326, 2016, https://doi.org/10.1039/C5CC07754K
[87] H. Lin, J. Huang, and L. Ding, “Preparation of Carbon Dots with High-Fluorescence Quantum Yield and Their Application in Dopamine Fluorescence Probe and Cellular Imaging,” J. Nanomater., vol. 2019, p. 5037243, 2019, https://doi.org/10.1155/2019/5037243
[88] H. Sun, H. Ji, E. Ju, Y. Guan, J. Ren, and X. Qu, “Synthesis of Fluorinated and Nonfluorinated Graphene Quantum Dots through a New Top-Down Strategy for Long-Time Cellular Imaging,” Chem. – A Eur. J., vol. 21, no. 9, pp. 3791–3797, Feb. 2015, https://doi.org/https://doi.org/10.1002/chem.201406345
[89] A. Das, V. Gude, D. Roy, T. Chatterjee, C. K. De, and P. K. Mandal, “On the Molecular Origin of Photoluminescence of Nonblinking Carbon Dot,” J. Phys. Chem. C, vol. 121, no. 17, pp. 9634–9641, May 2017, https://doi.org/10.1021/acs.jpcc.7b02433
[90] H. Sun, H. Ji, E. Ju, Y. Guan, J. Ren, and X. Qu, “Synthesis of fluorinated and nonfluorinated graphene quantum dots through a new top-down strategy for long-time cellular imaging,” Chem. – A Eur. J., vol. 21, no. 9, pp. 3791–3797, 2015, https://doi.org/10.1002/chem.201406345
[91] H. X. Mai et al., “No Title,” J. Am. Chem. Soc., vol. 128, p. 6426, 2006
[92] S. L. Li and Q. Xu, “Metal-organic frameworks as platforms for clean energy,” Energy Environ. Sci., vol. 6, no. 6, pp. 1656–1683, 2013, https://doi.org/10.1039/c3ee40507a
[93] Q. L. Zhu and Q. Xu, “Metal-organic framework composites,” Chem. Soc. Rev., vol. 43, no. 16, pp. 5468–5512, 2014, https://doi.org/10.1039/c3cs60472a
[94] T.-H. Chen et al., “Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs.,” Nat. Commun., vol. 5, p. 5131, Oct. 2014, https://doi.org/10.1038/ncomms6131
[95] Y. Ikezoe, G. Washino, T. Uemura, S. Kitagawa, and H. Matsui, “Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces,” Nat. Mater., vol. 11, no. 12, pp. 1081–1085, 2012, https://doi.org/10.1038/nmat3461
[96] A. Carné, C. Carbonell, I. Imaz, and D. Maspoch, “Nanoscale metal–organic materials,” Chem. Soc. Rev., vol. 40, no. 1, pp. 291–305, 2011, https://doi.org/10.1039/c0cs00042f
[97] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk, “Luminescent metal-organic frameworks.,” Chem. Soc. Rev., vol. 38, no. 5, pp. 1330–1352, May 2009, https://doi.org/10.1039/b802352m
[98] Y. Cui, Y. Yue, G. Qian, and B. Chen, “Luminescent Functional Metal–Organic Frameworks,” Chem. Rev., vol. 112, no. 2, pp. 1126–1162, Feb. 2012, https://doi.org/10.1021/cr200101d
[99] W. Bi, M. Zhou, Z. Ma, H. Zhang, J. Yu, and Y. Xie, “CuInSe2ultrathin nanoplatelets: Novel self-sacrificial template-directed synthesis and application for flexible photodetectors,” Chem. Commun., vol. 48, no. 73, pp. 9162–9164, 2012, https://doi.org/10.1039/c2cc34727j
[100] E. G. Moore, A. P. S. Samuel, and K. N. Raymond, “From Antenna to Assay: Lessons Learned in Lanthanide Luminescence,” Acc. Chem. Res., vol. 42, no. 4, pp. 542–552, Apr. 2009, https://doi.org/10.1021/ar800211j
[101] C. L. Cahill, D. T. de Lill, and M. Frisch, “Homo- and heterometallic coordination polymers from the f elements,” CrystEngComm, vol. 9, no. 1, pp. 15–26, 2007, https://doi.org/10.1039/B615696G
[102] Y. Qin et al., “Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory,” Phys. Chem. Chem. Phys., vol. 18, no. 20, pp. 14094–14103, 2016, https://doi.org/10.1039/C6CP01509C
[103] Y. Xiao, P. Weidler, S. Lin, C. Wöll, Z.-G. Gu, and J. Zhang, “Chiral Metal–Organic Cluster Induced High Circularly Polarized Luminescence of Metal–Organic Framework Thin Film,” Adv. Funct. Mater., vol. 32, Aug. 2022, https://doi.org/10.1002/adfm.202204289
[104] J. An, C. M. Shade, D. A. Chengelis-Czegan, S. Petoud, and N. L. Rosi, “Zinc-Adeninate Metal−Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations,” J. Am. Chem. Soc., vol. 133, no. 5, pp. 1220–1223, Feb. 2011, https://doi.org/10.1021/ja109103t
[105] L. M. Liz-Marzán, C. J. Murphy, and J. Wang, “Nanoplasmonics,” Chem. Soc. Rev., vol. 43, no. 11, pp. 3820–3822, 2014, https://doi.org/10.1039/C4CS90026J
[106] M. L. Brongersma, “Introductory lecture: nanoplasmonics,” Faraday Discuss., vol. 178, no. 0, pp. 9–36, 2015, https://doi.org/10.1039/C5FD90020D
[107] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, vol. 107, no. 3, pp. 668–677, Jan. 2003, https://doi.org/10.1021/jp026731y
[108] S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev., vol. 35, no. 3, pp. 209–217, 2006, https://doi.org/10.1039/B514191E
[109] K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev., vol. 111, no. 6, pp. 3828–3857, Jun. 2011, https://doi.org/10.1021/cr100313v
[110] P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials.,” Science, vol. 325, no. 5940, pp. 594–597, Jul. 2009, https://doi.org/10.1126/science.1174655
[111] S. K. Ghosh and T. Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles:  From Theory to Applications,” Chem. Rev., vol. 107, no. 11, pp. 4797–4862, Nov. 2007, https://doi.org/10.1021/cr0680282
[112] P. R. Sajanlal, T. S. Sreeprasad, A. K. Samal, and T. Pradeep, “Anisotropic nanomaterials: structure, growth, assembly, and functions.,” Nano Rev., vol. 2, 2011, https://doi.org/10.3402/nano.v2i0.5883
[113] M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics.,” ACS Nano, vol. 8, no. 1, pp. 834–840, Jan. 2014, https://doi.org/10.1021/nn405495q
[114] P. Hazarika and D. A. Russell, “Advances in fingerprint analysis.,” Angew. Chem. Int. Ed. Engl., vol. 51, no. 15, pp. 3524–3531, Apr. 2012, https://doi.org/10.1002/anie.201104313
[115] P. Rastogi and K. R. Pillai, “A study of fingerprints in relation to gender and blood group,” J. Indian Acad. Forensic Med., vol. 32, pp. 11–14, 2010
[116] Q. Wei, M. Zhang, B. Ogorevc, and X. Zhang, “Recent advances in the chemical imaging of human fingermarks (a review),” Analyst, vol. 141, no. 22, pp. 6172–6189, 2016, https://doi.org/10.1039/C6AN01121G
[117] A. V Ewing and S. G. Kazarian, “Infrared spectroscopy and spectroscopic imaging in forensic science,” Analyst, vol. 142, no. 2, pp. 257–272, 2017, https://doi.org/10.1039/C6AN02244H
[118] A. Bécue, “Emerging fields in fingermark (meta)detection – a critical review,” Anal. Methods, vol. 8, no. 45, pp. 7983–8003, 2016, https://doi.org/10.1039/C6AY02496C
[119] T. J. Comi, S. W. Ryu, and R. H. Perry, “Synchronized Desorption Electrospray Ionization Mass Spectrometry Imaging.,” Anal. Chem., vol. 88, no. 2, pp. 1169–1175, Jan. 2016, https://doi.org/10.1021/acs.analchem.5b03010
[120] S. Cadd, M. Islam, P. Manson, and S. Bleay, “Fingerprint composition and aging: A literature review.,” Sci. Justice, vol. 55, no. 4, pp. 219–238, Jul. 2015, https://doi.org/10.1016/j.scijus.2015.02.004
[121] F. Cortés-Salazar, D. Momotenko, H. H. Girault, A. Lesch, and G. Wittstock, “Seeing big with scanning electrochemical microscopy.,” Anal. Chem., vol. 83, no. 5, pp. 1493–1499, Mar. 2011, https://doi.org/10.1021/ac101931d
[122] D. Chávez, C. R. Garcia, J. Oliva, and L. A. Diaz-Torres, “A review of phosphorescent and fluorescent phosphors for fingerprint detection,” Ceram. Int., vol. 47, no. 1, pp. 10–41, 2021, https://doi.org/https://doi.org/10.1016/j.ceramint.2020.08.259
[123] E. Prabakaran and K. Pillay, “Nanomaterials for latent fingerprint detection: a review,” J. Mater. Res. Technol., vol. 12, pp. 1856–1885, 2021, https://doi.org/https://doi.org/10.1016/j.jmrt.2021.03.110
[124] K. Scotcher and R. Bradshaw, “The analysis of latent fingermarks on polymer banknotes using MALDI-MS,” Sci. Rep., vol. 8, no. 1, p. 8765, 2018, https://doi.org/10.1038/s41598-018-27004-0
[125] S. Of and C. Vision, “Stereomicroscopic Gender Determination From Fingerprint Ridge Stereomicroscopic Gender Determination From Fingerprint Ridge Density and Fingerprint,” Proc. 24th Myanmar Mil. Med. Conf., no. February, 2017, https://doi.org/10.13140/RG.2.2.13274.39368
[126] S. B. Nikam and S. Agarwal, “Ridgelet-based fake fingerprint detection,” Neurocomputing, vol. 72, no. 10, pp. 2491–2506, 2009, https://doi.org/https://doi.org/10.1016/j.neucom.2008.11.003
[127] B. J. Jones, A. J. Reynolds, M. Richardson, and V. G. Sears, “Nano-scale composition of commercial white powders for development of latent fingerprints on adhesives,” Sci. Justice, vol. 50, no. 3, pp. 150–155, 2010, https://doi.org/https://doi.org/10.1016/j.scijus.2009.08.001
[128] A. A. Cantu, “Silver Physical Developers for the Visualization of Latent Prints on Paper.,” Forensic Sci. Rev., vol. 13, no. 1, pp. 29–64, Jan. 2001
[129] B. Schnetz and P. Margot, “Technical note: latent fingermarks, colloidal gold and multimetal deposition (MMD): Optimisation of the method,” Forensic Sci. Int., vol. 118, no. 1, pp. 21–28, 2001, https://doi.org/https://doi.org/10.1016/S0379-0738(00)00361-3
[130] C. Lennard, P. A. Margot, M. Sterns, and R. N. Warrener, “Photoluminescent Enhancement of Ninhydrin Developed Fingerprints by Metal Complexation: Structural Studies of Complexes Formed Between Ruhemann’s Purple and Group IIb Metal Salts,” J. Forensic Sci., vol. 32, pp. 597–605, 1987
[131] J. Friesen, “Forensic Chemistry: The Revelation of Latent Fingerprints,” J. Chem. Educ., vol. 92, pp. 497–504, Mar. 2015, https://doi.org/10.1021/ed400597u
[132] A. L. Beresford and A. R. Hillman, “Electrochromic Enhancement of Latent Fingerprints on Stainless Steel Surfaces,” Anal. Chem., vol. 82, no. 2, pp. 483–486, Jan. 2010, https://doi.org/10.1021/ac9025434
[133] S. K. Bramble, “SEPARATION OF LATENT FINGERMARK RESIDUE BY THIN-LAYER CHROMATOGRAPHY,” J. Forensic Sci., vol. 40, pp. 969–975, 1995
[134] R. Yang and J. Lian, “Studies on the development of latent fingerprints by the method of solid–medium ninhydrin,” Forensic Sci. Int., vol. 242, pp. 123–126, 2014, https://doi.org/https://doi.org/10.1016/j.forsciint.2014.06.036
[135] J. Almog, G. Levinton-Shamuilov, Y. Cohen, and M. Azoury, “Fingerprint Reagents with Dual Action: Color and Fluorescence,” J. Forensic Sci., vol. 52, no. 2, pp. 330–334, Mar. 2007, https://doi.org/https://doi.org/10.1111/j.1556-4029.2007.00383.x
[136] G. Levinton-Shamuilov, Y. Cohen, M. Azoury, A. Chaikovsky, and J. Almog, “Genipin, a novel fingerprint reagent with colorimetric and fluorogenic activity, part II: optimization, scope and limitations.,” J. Forensic Sci., vol. 50, no. 6, pp. 1367–1371, Nov. 2005
[137] S. Coughlan, “Using acetone to increase visualization of ninhydrin-developed fingerprints obscured by common pen ink,” vol. 62, pp. 330–333, Jul. 2012
[138] O. P. Jasuja, M. A. Toofany, G. Singh, and G. S. Sodhi, “Dynamics of latent fingerprints: The effect of physical factors on quality of ninhydrin developed prints — A preliminary study,” Sci. Justice, vol. 49, no. 1, pp. 8–11, 2009, https://doi.org/https://doi.org/10.1016/j.scijus.2008.08.001
[139] M. F. Mangle, X. Xu, and M. de Puit, “Performance of 1,2-indanedione and the need for sequential treatment of fingerprints,” Sci. Justice, vol. 55, no. 5, pp. 343–346, 2015, https://doi.org/https://doi.org/10.1016/j.scijus.2015.04.002
[140] M. de Puit, M. Ismail, and X. Xu, “LCMS Analysis of Fingerprints, the Amino Acid Profile of 20 Donors,” J. Forensic Sci., vol. 59, no. 2, pp. 364–370, Mar. 2014, https://doi.org/https://doi.org/10.1111/1556-4029.12327
[141] W. Song et al., “Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging,” Nanoscale, vol. 4, no. 7, pp. 2333–2338, 2012, https://doi.org/10.1039/C2NR12030E
[142] D. Chavez, C. R. Garcia, I. Ruiz-Martinez, J. Oliva, E. Rivera-Rosales, and L. A. Diaz-Torres, “Fingerprint detection on low contrast surfaces using phosphorescent nanomaterials,” AIP Conf. Proc., vol. 2083, no. March 2019, 2019, https://doi.org/10.1063/1.5094304
[143] C. Huynh and J. Halámek, “Trends in fingerprint analysis,” TrAC Trends Anal. Chem., vol. 82, pp. 328–336, 2016, https://doi.org/https://doi.org/10.1016/j.trac.2016.06.003
[144] N. Singla, M. Kaur, and S. Sofat, “Automated latent fingerprint identification system: A review,” Forensic Sci. Int., vol. 309, p. 110187, 2020, https://doi.org/https://doi.org/10.1016/j.forsciint.2020.110187
[145] A. H. Malik, N. Zehra, M. Ahmad, R. Parui, and P. K. Iyer, “Advances in conjugated polymers for visualization of latent fingerprints: A critical perspective,” New J. Chem., vol. 44, no. 45, pp. 19423–19439, 2020, https://doi.org/10.1039/d0nj04131a
[146] G. Ren et al., “Nitrogen-doped carbon dots for the detection of mercury ions in living cells and visualization of latent fingerprints,” New J. Chem., vol. 42, no. 9, pp. 6824–6830, 2018, https://doi.org/10.1039/c7nj05170k
[147] A. Bécue, “Emerging fields in fingermark (meta)detection-a critical review,” Anal. Methods, vol. 8, no. 45, pp. 7983–8003, 2016, https://doi.org/10.1039/c6ay02496c
[148] Y.-P. Luo, Y.-B. Zhao, and S. Liu, “Evaluation of DFO/PVP and its application to latent fingermarks development on thermal paper,” Forensic Sci. Int., vol. 229, no. 1, pp. 75–79, 2013, https://doi.org/https://doi.org/10.1016/j.forsciint.2013.03.045
[149] L. Liu, Z. Zhang, L. Zhang, and Y. Zhai, “The effectiveness of strong afterglow phosphor powder in the detection of fingermarks,” Forensic Sci. Int., vol. 183, no. 1, pp. 45–49, 2009, https://doi.org/https://doi.org/10.1016/j.forsciint.2008.10.008
[150] S. Das et al., “Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry,” Anal. Chem., vol. 84, no. 2, pp. 597–625, Jan. 2012, https://doi.org/10.1021/ac202904n
[151] D. Chavez, C. R. Garcia, I. Ruiz-Martinez, J. Oliva, E. Rivera-Rosales, and L. A. Diaz-Torres, “Fingerprint detection on low contrast surfaces using phosphorescent nanomaterials,” AIP Conf. Proc., vol. 2083, no. 1, p. 20001, Mar. 2019, https://doi.org/10.1063/1.5094304
[152] Q. Xiao, L. Xiao, Y. Liu, X. Chen, and Y. Li, “Synthesis and luminescence properties of needle-like SrAl2O4:Eu, Dy phosphor via a hydrothermal co-precipitation method,” J. Phys. Chem. Solids, vol. 71, no. 7, pp. 1026–1030, 2010, https://doi.org/https://doi.org/10.1016/j.jpcs.2010.04.017
[153] V. Sharma, A. Das, V. Kumar, O. M. Ntwaeaborwa, and H. C. Swart, “Potential of Sr4Al14O25: Eu2+,Dy3+ inorganic oxide-based nanophosphor in Latent fingermark detection,” J. Mater. Sci., vol. 49, no. 5, pp. 2225–2234, 2014, https://doi.org/10.1007/s10853-013-7916-2
[154] V. Sharma, A. Das, and V. Kumar, “Eu2+,Dy3+ codoped SrAl2O4 nanocrystalline phosphor for latent fingerprint detection in forensic applications,” Mater. Res. Express, vol. 3, no. 1, p. 15004, 2016, https://doi.org/10.1088/2053-1591/3/1/015004
[155] W. Shan, L. Wu, N. Tao, Y. Chen, and D. Guo, “Optimization method for green SrAl2O4:Eu2+,Dy3+ phosphors synthesized via co-precipitation route assisted by microwave irradiation using orthogonal experimental design,” Ceram. Int., vol. 41, no. 10, Part B, pp. 15034–15040, 2015, https://doi.org/https://doi.org/10.1016/j.ceramint.2015.08.050
[156] S. Yeshodamma, D. V Sunitha, R. B. Basavaraj, G. P. Darshan, B. D. Prasad, and H. Nagabhushana, “Monovalent ions co-doped SrTiO3:Pr3+ nanostructures for the visualization of latent fingerprints and can be red component for solid state devices,” J. Lumin., vol. 208, pp. 371–387, 2019, https://doi.org/https://doi.org/10.1016/j.jlumin.2018.12.044
[157] V. Sharma, A. Das, V. Kumar, V. Kumar, K. Verma, and H. C. Swart, “Combustion synthesis and characterization of blue long lasting phosphor CaAl2O4: Eu2+, Dy3+ and its novel application in latent fingerprint and lip mark detection,” Phys. B Condens. Matter, vol. 535, pp. 149–156, 2018, https://doi.org/https://doi.org/10.1016/j.physb.2017.07.019
[158] J. Y. Park, J. W. Chung, S. J. Park, and H. K. Yang, “Versatile fluorescent CaGdAlO4:Eu3+ red phosphor for latent fingerprints detection,” J. Alloys Compd., vol. 824, p. 153994, 2020, https://doi.org/https://doi.org/10.1016/j.jallcom.2020.153994
[159] K. M. Girish, S. C. Prashantha, R. Naik, and H. Nagabhushana, “Zn2TiO4: A novel host lattice for Sm3+ doped reddish orange light emitting photoluminescent material for thermal and fingerprint sensor,” Opt. Mater. (Amst)., vol. 73, pp. 197–205, 2017, https://doi.org/https://doi.org/10.1016/j.optmat.2017.08.009
[160] R. E. Rojas-Hernandez, F. Rubio-Marcos, M. Á. Rodriguez, and J. F. Fernandez, “Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material,” Renew. Sustain. Energy Rev., vol. 81, pp. 2759–2770, 2018, https://doi.org/https://doi.org/10.1016/j.rser.2017.06.081
[161] R. S. P. King and D. A. Skros, “Sunlight-activated near-infrared phosphorescence as a viable means of latent fingermark visualisation,” Forensic Sci. Int., vol. 276, pp. e35–e39, 2017, https://doi.org/https://doi.org/10.1016/j.forsciint.2017.04.012
[162] Z. Pan, Y.-Y. Lu, and F. Liu, “Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates,” Nat. Mater., vol. 11, no. 1, pp. 58–63, 2012, https://doi.org/10.1038/nmat3173
[163] X. Ran, Z. Wang, Z. Zhang, F. Pu, J. Ren, and X. Qu, “Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances,” Chem. Commun., vol. 52, no. 3, pp. 557–560, 2016, https://doi.org/10.1039/C5CC08534A
[164] L. K. Bharat, G. S. R. Raju, and J. S. Yu, “Red and green colors emitting spherical-shaped calcium molybdate nanophosphors for enhanced latent fingerprint detection.,” Sci. Rep., vol. 7, no. 1, p. 11571, Sep. 2017, https://doi.org/10.1038/s41598-017-11692-1
[165] V. Prasad, S. Lukose, P. Agarwal, and L. Prasad, “Role of Nanomaterials for Forensic Investigation and Latent Fingerprinting—A Review,” J. Forensic Sci., vol. 65, no. 1, pp. 26–36, Jan. 2020, https://doi.org/https://doi.org/10.1111/1556-4029.14172
[166] T. J. Bukowski and J. H. Simmons, “Quantum Dot Research: Current State and Future Prospects,” Crit. Rev. Solid State Mater. Sci., vol. 27, no. 3–4, pp. 119–142, Jul. 2002, https://doi.org/10.1080/10408430208500496
[167] J. Zhu et al., “Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices,” Nanotechnology, vol. 29, no. 8, p. 85705, 2018, https://doi.org/10.1088/1361-6528/aaa321
[168] R. B. Basavaraj, G. P. Darshan, B. Daruka Prasad, S. C. Sharma, and H. Nagabhushana, “Rapid visualization of latent fingerprints using novel CaSiO3:Sm3+ nanophosphors fabricated via ultrasound route,” J. Rare Earths, vol. 37, no. 1, pp. 32–44, 2019, https://doi.org/https://doi.org/10.1016/j.jre.2018.04.019
[169] M. Wang, M. Li, A. Yu, J. Wu, and C. Mao, “Rare Earth Fluorescent Nanomaterials for Enhanced Development of Latent Fingerprints,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28110–28115, Dec. 2015, https://doi.org/10.1021/acsami.5b09320
[170] M. Wang, Y. Zhu, and C. Mao, “Synthesis of NIR-Responsive NaYF4:Yb,Er Upconversion Fluorescent Nanoparticles Using an Optimized Solvothermal Method and Their Applications in Enhanced Development of Latent Fingerprints on Various Smooth Substrates,” Langmuir, vol. 31, no. 25, pp. 7084–7090, Jun. 2015, https://doi.org/10.1021/acs.langmuir.5b01151
[171] M. Saif et al., “Novel non-toxic and red luminescent sensor based on Eu3+:Y2Ti2O7/SiO2 nano-powder for latent fingerprint detection,” Sensors Actuators B Chem., vol. 220, pp. 162–170, 2015, https://doi.org/https://doi.org/10.1016/j.snb.2015.05.040
[172] A. Das and V. Shama, “Synthesis and characterization of Eu3+ doped α-Al2O3 nanocrystalline powder for novel application in latent fingerprint development,” Adv. Mater. Lett., vol. 7, no. 4, pp. 302–306, 2016, https://doi.org/10.5185/amlett.2016.6310
[173] G. S. Sodhi and J. Kaur, “Physical developer method for detection of latent fingerprints: A review,” Egypt. J. Forensic Sci., vol. 6, no. 2, pp. 44–47, 2016, https://doi.org/https://doi.org/10.1016/j.ejfs.2015.05.001
[174] B. Stojanović, O. Marques, and A. Nešković, “Latent overlapped fingerprint separation: a review,” Multimed. Tools Appl., vol. 76, no. 15, pp. 16263–16290, 2017, https://doi.org/10.1007/s11042-016-3908-y
[175] V. Sharma, A. Das, and V. Kumar, “Eu2+, Dy3 + codoped SrAl2O4 nanocrystalline phosphor for latent fi ngerprint detection in forensic applications,” Mater. Res. Express, vol. 3, no. 1, p. 15004
[176] Y. Liu et al., “Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication,” Nat. Commun., vol. 10, no. 1, p. 2409, 2019, https://doi.org/10.1038/s41467-019-10406-7
[177] H. Zhang et al., “Materials and Technologies to Combat Counterfeiting of Pharmaceuticals: Current and Future Problem Tackling,” Adv. Mater., vol. 32, no. 11, p. 1905486, Mar. 2020, https://doi.org/https://doi.org/10.1002/adma.201905486
[178] G. Schirripa Spagnolo, L. Cozzella, and C. Simonetti, “Banknote security using a biometric-like technique: a hylemetric approach,” Meas. Sci. Technol., vol. 21, no. 5, p. 55501, 2010, https://doi.org/10.1088/0957-0233/21/5/055501
[179] X. Li and Y. Hu, “Luminescent films functionalized with cellulose nanofibrils/CdTe quantum dots for anti-counterfeiting applications,” Carbohydr. Polym., vol. 203, pp. 167–175, 2019, https://doi.org/https://doi.org/10.1016/j.carbpol.2018.09.028
[180] Z. Zhang et al., “Switchable up and down-conversion luminescent properties of Nd(III)-nanopaper for visible and near-infrared anti-counterfeiting,” Carbohydr. Polym., vol. 252, p. 117134, 2021, https://doi.org/https://doi.org/10.1016/j.carbpol.2020.117134
[181] R. Huang et al., “Tunable upconversion of holmium sublattice through interfacial energy transfer for anti-counterfeiting,” Nanoscale, vol. 13, no. 9, pp. 4812–4820, 2021, https://doi.org/10.1039/D0NR09068A
[182] D. Wang et al., “Achieving Color-Tunable and Time-Dependent Organic Long Persistent Luminescence via Phosphorescence Energy Transfer for Advanced Anti-Counterfeiting,” Adv. Funct. Mater., vol. 33, no. 1, p. 2208895, Jan. 2023, https://doi.org/https://doi.org/10.1002/adfm.202208895
[183] K. Jiang, L. Zhang, J. Lu, C. Xu, C. Cai, and H. Lin, “Triple-Mode Emission of Carbon Dots: Applications for Advanced Anti-Counterfeiting,” Angew. Chemie Int. Ed., vol. 55, no. 25, pp. 7231–7235, Jun. 2016, https://doi.org/https://doi.org/10.1002/anie.201602445
[184] Kanika, P. Kumar, S. Singh, and B. K. Gupta, “A Novel Approach to Synthesise a Dual-Mode Luminescent Composite Pigment for Uncloneable High-Security Codes to Combat Counterfeiting,” Chem. – A Eur. J., vol. 23, no. 67, pp. 17144–17151, Dec. 2017, https://doi.org/https://doi.org/10.1002/chem.201704076
[185] “Eur J Inorg Chem – 2022 – Salaam – Tris‐dipicolinate Lanthanide Complexes Influence of the Second Hydration Sphere on the.pdf.”
[186] J. Andres, R. D. Hersch, J. E. Moser, and A. S. Chauvin, “A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks,” Adv. Funct. Mater., vol. 24, no. 32, pp. 5029–5036, 2014, https://doi.org/10.1002/adfm.201400298
[187] L. Chen et al., “The temperature-sensitive luminescence of (Y,Gd)VO4:Bi3+,Eu3+ and its application for stealth anti-counterfeiting,” Phys. status solidi – Rapid Res. Lett., vol. 6, no. 7, pp. 321–323, Jul. 2012, https://doi.org/https://doi.org/10.1002/pssr.201206234
[188] T. Blumenthal et al., “Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications,” Nanotechnology, vol. 23, no. 18, p. 185305, 2012, https://doi.org/10.1088/0957-4484/23/18/185305
[189] W. Gao, W. Ge, J. Shi, Y. Tian, J. Zhu, and Y. Li, “Stretchable, flexible, and transparent SrAl2O4:Eu2+@TPU ultraviolet stimulated anti-counterfeiting film,” Chem. Eng. J., vol. 405, p. 126949, 2021, https://doi.org/https://doi.org/10.1016/j.cej.2020.126949
[190] Y. Zhang et al., “Multicolor Barcoding in a Single Upconversion Crystal,” J. Am. Chem. Soc., vol. 136, no. 13, pp. 4893–4896, Apr. 2014, https://doi.org/10.1021/ja5013646
[191] J. M. Meruga, W. M. Cross, P. Stanley May, Q. Luu, G. A. Crawford, and J. J. Kellar, “Security printing of covert quick response codes using upconverting nanoparticle inks,” Nanotechnology, vol. 23, no. 39, 2012, https://doi.org/10.1088/0957-4484/23/39/395201
[192] J. M. Meruga, A. Baride, W. Cross, J. J. Kellar, and P. S. May, “Red-green-blue printing using luminescence-upconversion inks,” J. Mater. Chem. C, vol. 2, no. 12, pp. 2221–2227, 2014, https://doi.org/10.1039/c3tc32233e
[193] M. Wang et al., “NIR-induced highly sensitive detection of latent fingermarks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state,” Nano Res., vol. 8, no. 6, pp. 1800–1810, 2015, https://doi.org/10.1007/s12274-014-0686-6
[194] N. M. Sangeetha et al., “3D assembly of upconverting NaYF4 nanocrystals by AFM nanoxerography: Creation of anti-counterfeiting microtags,” Nanoscale, vol. 5, no. 20, pp. 9587–9592, 2013, https://doi.org/10.1039/c3nr02734a
[195] M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale, vol. 7, no. 10, pp. 4423–4431, 2015, https://doi.org/10.1039/c4nr06944g
[196] J. Méndez-Ramos, J. C. Ruiz-Morales, P. Acosta-Mora, and N. M. Khaidukov, “Infrared-light induced curing of photosensitive resins through photon up-conversion for novel cost-effective luminescent 3D-printing technology,” J. Mater. Chem. C, vol. 4, no. 4, pp. 801–806, 2015, https://doi.org/10.1039/c5tc03315b
[197] A. Baride et al., “A NIR-to-NIR upconversion luminescence system for security printing applications,” RSC Adv., vol. 5, no. 123, pp. 101338–101346, 2015, https://doi.org/10.1039/c5ra20785a
[198] Y. Liu, K. Ai, and L. Lu, “Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting,” Nanoscale, vol. 3, no. 11, pp. 4804–4810, 2011, https://doi.org/10.1039/c1nr10752f
[199] P. Kumar, J. Dwivedi, and B. K. Gupta, “Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications,” J. Mater. Chem. C, vol. 2, no. 48, pp. 10468–10475, 2014, https://doi.org/10.1039/C4TC02065K
[200] Z. Lu, Y. Liu, W. Hu, X. W. Lou, and C. M. Li, “Rewritable multicolor fluorescent patterns for multistate memory devices with high data storage capacity,” Chem. Commun., vol. 47, no. 34, pp. 9609–9611, 2011, https://doi.org/10.1039/c1cc13448e
[201] B. Bao et al., “Patterning Fluorescent Quantum Dot Nanocomposites by Reactive Inkjet Printing,” Small, vol. 11, no. 14, pp. 1649–1654, Apr. 2015, https://doi.org/https://doi.org/10.1002/smll.201403005
[202] Y. Gao et al., “Decorating CdTe QD-Embedded Mesoporous Silica Nanospheres with Ag NPs to Prevent Bacteria Invasion for Enhanced Anticounterfeit Applications,” ACS Appl. Mater. Interfaces, vol. 7, no. 18, pp. 10022–10033, May 2015, https://doi.org/10.1021/acsami.5b02472
[203] L. Zhou, A. Zhao, Z. Wang, Z. Chen, J. Ren, and X. Qu, “Ionic Liquid-Assisted Synthesis of Multicolor Luminescent Silica Nanodots and Their Use as Anti-counterfeiting Ink,” ACS Appl. Mater. Interfaces, vol. 7, no. 4, pp. 2905–2911, Feb. 2015, https://doi.org/10.1021/am5083304
[204] J. Cui, S. Xu, C. Guo, R. Jiang, T. D. James, and L. Wang, “Highly Efficient Photothermal Semiconductor Nanocomposites for Photothermal Imaging of Latent Fingerprints,” Anal. Chem., vol. 87, no. 22, pp. 11592–11598, Nov. 2015, https://doi.org/10.1021/acs.analchem.5b03652
[205] B. Wang, W. Liang, Z. Guo, and W. Liu, “Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature,” Chem. Soc. Rev., vol. 44, no. 1, pp. 336–361, 2015, https://doi.org/10.1039/c4cs00220b
[206] X. Wen et al., “Green synthesis of carbon nanodots from cotton for multicolor imaging, patterning, and sensing,” Sensors Actuators B Chem., vol. 221, pp. 769–776, 2015, https://doi.org/https://doi.org/10.1016/j.snb.2015.07.019
[207] F. Wang, Z. Xie, B. Zhang, Y. Liu, W. Yang, and C. Y. Liu, “Down- and up-conversion luminescent carbon dot fluid: Inkjet printing and gel glass fabrication,” Nanoscale, vol. 6, no. 7, pp. 3818–3823, 2014, https://doi.org/10.1039/c3nr05869g
[208] J. Wang, C. F. Wang, and S. Chen, “Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns,” Angew. Chemie – Int. Ed., vol. 51, no. 37, pp. 9297–9301, 2012, https://doi.org/10.1002/anie.201204381
[209] B. Wang et al., “Tunable amphiphilicity and multifunctional applications of ionic-liquid-modified carbon quantum dots,” ACS Appl. Mater. Interfaces, vol. 7, no. 12, pp. 6919–6925, 2015, https://doi.org/10.1021/acsami.5b00758
[210] S. Gao et al., “A green one-arrow-two-hawks strategy for nitrogen-doped carbon dots as fluorescent ink and oxygen reduction electrocatalysts,” J. Mater. Chem. A, vol. 2, no. 18, pp. 6320–6325, 2014, https://doi.org/10.1039/c3ta15443b
[211] K. Muthamma, D. Sunil, and P. Shetty, “Carbon dots as emerging luminophores in security inks for anti-counterfeit applications – An up-to-date review,” Appl. Mater. Today, vol. 23, p. 101050, 2021, https://doi.org/https://doi.org/10.1016/j.apmt.2021.101050
[212] J. Wang, C.-F. Wang, and S. Chen, “Amphiphilic Egg-Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns,” Angew. Chemie Int. Ed., vol. 51, no. 37, pp. 9297–9301, Sep. 2012, https://doi.org/https://doi.org/10.1002/anie.201204381
[213] B. Wang et al., “Tunable Amphiphilicity and Multifunctional Applications of Ionic-Liquid-Modified Carbon Quantum Dots,” ACS Appl. Mater. Interfaces, vol. 7, no. 12, pp. 6919–6925, Apr. 2015, https://doi.org/10.1021/acsami.5b00758
[214] L. Li and T. Dong, “Photoluminescence tuning in carbon dots: Surface passivation or/and functionalization, heteroatom doping,” J. Mater. Chem. C, vol. 6, no. 30, pp. 7944–7970, 2018, https://doi.org/10.1039/c7tc05878k
[215] M. L. Brongersma, “Introductory lecture: Nanoplasmonics,” Faraday Discuss., vol. 178, pp. 9–36, 2015, https://doi.org/10.1039/c5fd90020d
[216] R. Santonocito, M. Intravaia, I. M. Caruso, A. Pappalardo, G. Trusso Sfrazzetto, and N. Tuccitto, “Fluorescence sensing by carbon nanoparticles,” Nanoscale Adv., vol. 4, no. 8, pp. 1926–1948, 2022, https://doi.org/10.1039/d2na00080f
[217] A. Tan, G. Yang, and X. Wan, “Ultra-high quantum yield nitrogen-doped carbon quantum dots and their versatile application in fluorescence sensing, bioimaging and anti-counterfeiting,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 253, p. 119583, 2021, https://doi.org/https://doi.org/10.1016/j.saa.2021.119583
[218] C. Ma, Z. Wang, Z. Hu, Y. Wang, Y. Zhao, and J. Shi, “Preparation of submicron monodisperse melamine resin microspheres and nitrogen-doped carbon microspheres derived from them,” New Carbon Mater., vol. 35, no. 3, pp. 269–285, 2020, https://doi.org/https://doi.org/10.1016/S1872-5805(20)60489-9
[219] A. Hazra, U. Mondal, S. Mandal, and P. Banerjee, “Advancement in functionalized luminescent frameworks and their prospective applications as inkjet-printed sensors and anti-counterfeit materials,” Dalt. Trans., vol. 50, no. 25, pp. 8657–8670, 2021, https://doi.org/10.1039/d1dt00705j
[220] K. A. White, D. A. Chengelis, K. A. Gogick, J. Stehman, N. L. Rosi, and S. Petoud, “Near-infrared luminescent lanthanide MOF barcodes.,” J. Am. Chem. Soc., vol. 131, no. 50, pp. 18069–18071, Dec. 2009, https://doi.org/10.1021/ja907885m
[221] L. L. da Luz et al., “Inkjet Printing of Lanthanide-Organic Frameworks for Anti-Counterfeiting Applications.,” ACS Appl. Mater. Interfaces, vol. 7, no. 49, pp. 27115–27123, Dec. 2015, https://doi.org/10.1021/acsami.5b06301
[222] W. J. Li et al., “Patterned growth of luminescent metal-organic framework films: A versatile electrochemically-assisted microwave deposition method,” Chem. Commun., vol. 52, no. 20, pp. 3951–3954, 2016, https://doi.org/10.1039/c6cc00519e
[223] L. L. Da Luz et al., “Inkjet Printing of Lanthanide-Organic Frameworks for Anti-Counterfeiting Applications,” ACS Appl. Mater. Interfaces, vol. 7, no. 49, pp. 27115–27123, 2015, https://doi.org/10.1021/acsami.5b06301
[224] Y. Zhou and B. Yan, “Ratiometric multiplexed barcodes based on luminescent metal-organic framework films,” J. Mater. Chem. C, vol. 3, no. 32, pp. 8413–8418, 2015, https://doi.org/10.1039/c5tc01311a
[225] Y. Lu and B. Yan, “Luminescent lanthanide barcodes based on postsynthetic modified nanoscale metal–organic frameworks,” J. Mater. Chem. C, vol. 2, no. 35, pp. 7411–7416, 2014, https://doi.org/10.1039/C4TC01077A
[226] M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications.,” Nanoscale, vol. 7, no. 10, pp. 4423–4431, Mar. 2015, https://doi.org/10.1039/c4nr06944g
[227] J. Zhang et al., “A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink,” Chem. Commun., vol. 51, no. 52, pp. 10539–10542, 2015, https://doi.org/10.1039/C5CC03086B
[228] C. Campos-Cuerva et al., “Screen-printed nanoparticles as anti-counterfeiting tags,” Nanotechnology, vol. 27, no. 9, p. 95702, 2016, https://doi.org/10.1088/0957-4484/27/9/095702
[229] Y. Chen et al., “Chirality-activated mechanoluminescence from aggregation-induced emission enantiomers with high contrast mechanochromism and force-induced delayed fluorescence,” Mater. Chem. Front., vol. 3, no. 9, pp. 1800–1806, 2019, https://doi.org/10.1039/C9QM00312F
[230] J. Zhang et al., “A microwave-facilitated rapid synthesis of gold nanoclusters with tunable optical properties for sensing ions and fluorescent ink,” Chem. Commun., vol. 51, no. 52, pp. 10539–10542, 2015, https://doi.org/10.1039/c5cc03086b
[231] J. M. Meruga et al., “Stable Inks Containing Upconverting Nanoparticles Based on an Oil-in-Water Nanoemulsion.,” Langmuir, vol. 34, no. 4, pp. 1535–1541, Jan. 2018, https://doi.org/10.1021/acs.langmuir.7b03415
[232] M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, “Inkjet printing-process and its applications.,” Adv. Mater., vol. 22, no. 6, pp. 673–685, Feb. 2010, https://doi.org/10.1002/adma.200901141
[233] E. Tekin, P. J. Smith, and U. S. Schubert, “Inkjet printing as a deposition and patterning tool for polymers and inorganic particles,” Soft Matter, vol. 4, no. 4, pp. 703–713, 2008, https://doi.org/10.1039/B711984D
[234] J. Perelaer, P. J. Smith, C. E. Hendriks, A. M. J. van den Berg, and U. S. Schubert, “The preferential deposition of micro-particles at the boundary of inkjet printed droplets.,” Soft Matter, vol. 4, no. 5, pp. 1072–1078, Apr. 2008, https://doi.org/10.1039/b715076h
[235] M. You, J. Zhong, Y. Hong, Z. Duan, M. Lin, and F. Xu, “Inkjet printing of upconversion nanoparticles for anti-counterfeit applications,” Nanoscale, vol. 7, no. 10, pp. 4423–4431, 2015, https://doi.org/10.1039/c4nr06944g