Thermoelectric Effects


Thermoelectric Effects

Monalisha Samanta, Subhajit Kundu, Debarati Mitra

The effect of thermoelectricity causes the conversion of waste heat into electricity. It is an economical environmentally beneficial and convenient energy conversion technology that can be used across a broad range of temperature. This chapter introduces thermoelectricity while also exploring its historical context. The thermoelectric property and the different thermoelectric effects, viz. Seebeck, Peltier, Thomson effects, and others are discussed. Additionally, a quick overview of thermoelectric materials has been presented. The figure of merit, a parameter defining research in thermoelectric effects is discussed in this chapter. After all, a concise outline regarding different thermoelectric materials including hybrid polymers, conductive polymers, thermoelectric plastics etc. has also been included herewith.

Thermoelectric Effects, Energy Conversion, Performance Parameters, Hybrid Thermoelectric Materials, Thermoelectric Plastics

Published online 2/10/2024, 23 pages

Citation: Monalisha Samanta, Subhajit Kundu, Debarati Mitra, Thermoelectric Effects, Materials Research Foundations, Vol. 162, pp 1-23, 2024


Part of the book on Thermoelectric Polymers

[1] D. Dai, Y. Zhou, J. Liu, Liquid metal based thermoelectric generation system for waste heat recovery, Renew. Energy. 36 (2011) 3530-3536.
[2] H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5 (1954) 386-390.
[3] A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, Ltd., London, 1957.
[4] T.J. Seebeck, The magnetic polarization of metals and ores produced by temperature difference, Proc. Prussian Acad. Sci. (1822) 265-373.
[5] J.C.A. Peltier, Nouvelles experiences sur la caloricite des courants electrique, Ann. Chim. Phys. 56 (1834) 371-386.
[6] W. Thomson, On the mechanical theory of thermo-electric currents, Math. Phys. Pap. 1 (1851) 316-323.
[7] A. Fledhoff, Power conversion and its efficiency in thermoelectric materials, Entropy. 22 (2020) 803.
[8] K. Landecker, Some aspects of the performance of refrigerating thermojunctions with radial flow of current, J. Appl. Phys. 47 (1976) 1846.
[9] M. Gaikwad, D. Shevade, A. Kadam, B. Shubham, Review on thermoelectric refrigeration: Materials and technology, Int. J. Curr. Eng. Technol, 2016.
[10] G. Tan, M. Ohta, M.G. Kanatzidis, Thermoelectric power generation: From new materials to devices, Philos. Trans. Royal Soc. A Philos T R Soc A., 2019.
[11] S. LeBlanc, Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications, Sustain. Mater. Technol. 1 (2014) 26-35.
[12] J. Li, A.B. Huckleby, M. Zhang, Polymer-based thermoelectric materials: A review of power factor improving strategies, J. Materiom. 8 (2022) 204-220.
[13] C.J. Yao, H.L. Zhang, Q. Zhang, Recent progress in thermoelectric materials based on conjugated polymers, Polymers. 11 (2019) 107.
[14] M. Goel, M. Thelakkat, Polymer thermoelectrics: Opportunities and challenges, Macromolecules. 53 (2020) 3632-3642.
[15] B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Organic thermoelectric materials for energy harvesting and temperature control, Nat. Rev. Mater. 1 (2016) 16050.
[16] P. Sengodu, A.D. Deshmukh, Conducting polymers and their inorganic composites for advanced Li-ion batteries: A review, RSC Adv. 5 (2015) 42109-42130.
[17] S. Wang, G. Zuo, J. Kim, H. Sirringhaus, Progress of conjugated polymers as emerging thermoelectric materials, Prog. Polym. Sci. 129 (2022) 101548.
[18] W. Zhao, J. Ding, Y. Zou, C.-a. Di, D. Zhu, Chemical doping of organic semiconductors for thermoelectric applications, Chem. Soc. Rev. 49 (2020) 7210-7228.
[19] X.L. Shi, W.Y. Chen, T. Zhang, J. Zou, Z.-G.Chen, Fiber-based thermoelectrics for solid, portable, and wearable electronics, Energy Environ. Sci. 14 (2021) 729.
[20] S.K. Tripathi, R. Kaur, Organic Semiconductors and polymers, in: R. Kumar, R. Singh (Eds.), Thermoelectricity and Advanced Thermoelectric Materials, Woodhead Publishing, Elsevier, 2021, 195-196.
[21] H. Wang, C. Yu, Organic thermoelectric materials and devices, in: R. Funahashi (Eds.), Thermoelectric Energy Conversion, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier, 2021, 347-365.
[22] Thermoelectric effect,, 2020 (accessed on 04th May, 2022).
[23] R. Kumar, R. Singh, Thermoelectricity and Advanced Thermoelectric Materials, Woodhead Publishing, Elsevier, United Kingdom, 2021.
[24] L. Chen, R. Liu, X. Shi, Thermoelectric Materials and Devices, Elsevier, United Kingdom, 2021.
[25] Y.X. Gan, Nanomaterials For Thermoelectric Devices, Pan Stanford Publishing Pte. Ltd., Taylor & Francis, New York, 2018.
[26] D. Camuffo, Measuring Temperature, Microclimate for Cultural Heritage, Elsevier, 2014.
[27] B. J. Huang, A precise measurement of temperature difference using thermopiles, Exp. Therm. Fluid. Sci. 3 (1990) 265-271.
[28] D. Enescu, Thermoelectric Energy Harvesting: Basic Principles and Applications, Green Energy Advances, IntechOpen, 2019.
[29] M. Hyland, H. Hunter, J. Liu, E. Veety, D. Vashaee, Wearable thermoelectric generators for human body heat harvesting, Appl. Energy. 182 (2016) 518-524.
[30] Bridgman Effect,, 2022 (accessed on 10th May, 2022).
[31] O. Y. Titov, Y. G. Gurevich, Temperature gradient and transport of heat and charge in a semiconductor structure, Low Temp. Phys. 47 (2021) 550.
[32] S. Ahmad, M.E.S. Abdullah, M.F. Yaakub, A.Z. Jidin, S.H. Joharin, M. Zahari, Analysis of portable temperature-controlled device by using peltier effect, Proc. Mechanical Eng. Res. Day, 2017, 176-177.
[33] E. Lenz, Einige Versuche Im Gebiete Des Galvanismus, Ann. Phys. 120 (1838) 342-349.
[34] E. M. Barber, Thermoelectric Materials Advances and Applications, CRC Press, Taylor & Francis, New York, 2015.
[35] G.S. Nolas, H.J. Goldsmid, Thermal Conductivity: Theory, Properties and Applications, Springer, New York, 2004.
[36] U. Birkholz, Untersuchung der intermetallischen Verbindung Bi2Te3 sowie der festen Losungen Bi2-xSbxTe3 und Bi2Te3-xSex hinsichtlich ihrer Eignung als Material fur Halbleiter-Thermoelemente, Z. Naturforsch. 13 (1958) 780-792.
[37] F.D. Rosi, B. Abeles, R.V. Jensen, Materials for thermoelectric refrigeration, J. Phys.Chem. Solids. 10 (1959) 191.
[38] C. Han, Q. Sun, Z. Li, S.X. Dou, Thermoelectric enhancement of different kinds of metal chalcogenides, Adv. Energy Mater. 6 (2016) 1600498.
[39] H.S. Kim, N.A. Heinz, Z.M. Gibbs, Y. Tang, S.D. Kang, G.J. Snyder, High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control, Mater. Today. 20 (2017) 452-459.
[40] A.D. LaLonde, Y. Pei, H. Wang, G. Jeffrey Snyder, Lead telluride alloy thermoelectrics, Mater. Today. 14 (2011) 526-532.
[41] Y. Pei, H. Wang, G.J. Snyder, Band engineering of thermoelectric materials, Adv. Mater. 24 (2012) 6125-6135.
[42] J.P. Heremans, V. Jovovic, E.S. Toberrer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science. 321 (2008) 554-557.
[43] Y. Pei, X. Shi, A.D. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature. 473 (2011) 66-69.
[44] E.A. Skrabek, D.S. Trimmer, in: D.M. Rowe (Eds.), CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, 1994.
[45] C.B. Vining, Thermoelectric materials-silicon germanium, in: D.M. Rowe (Eds.), Handbook of Thermoelectric, CRC Press LLC, Danvers, 1995.
[46] W. Liu, K. Yin, Q. Zhang, C. Uher, X. Tang, Eco-friendly high-performance silicide thermoelectric materials, Natl. Sci. Rev. 4 (2017) 611-626.
[47] T. Itoh, M. Yamada, Synthesis of thermoelectric manganese silicide by mechanical alloying and pulse discharge sintering, J. Electron. Mater. 38 (2009) 925-929.
[48] W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, C. Uher, Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi, Intermetallics. 19 (2011) 404-408.
[49] G.S. Nolas, J. Sharp, H.J. Goldsmid, The phonon-glass electron-crystal approach to thermoelectric materials research, in: G.S. Nolas , J. Sharp, H.J. Goldsmid (Eds.), Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York, 2001, pp. 177-207.
[50] H. Kleinke, New bulk materials for thermoelectric power generation: Clathrates and complex antimonides, Chem. Mater. 22 (2010) 604-611.
[51] E. Toberer, M. Christensen, B.B. Iversen, G.J. Snyder, High temperature thermoelectric efficiency in Ba8Ga16Ge30, Phys. Rev. B. 77 (2008) 075203.
[52] G.S. Nolas, G.A. Slack, S.B. Schujman, T.M. Tritt (Eds.), Recent Trends in Thermoelectric Materials Research I-Semiconductor and Semimetals, Academic Press, London, 2001.
[53] B.X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, W. Zhang, L. Chen, W. Wong-Ng, On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements, Adv. Funct. Mater. 20 (2010) 755-763.
[54] J. Graff, S. Zhu, T. Holgate, J. Peng, J. He, T.M. Tritt, High-temperature thermoelectric properties of Co4Sb12-based skutterudites with multiple filler atoms: Ce0.1InxYbyCo4Sb12, J. Electron. Mater. 40 (2011) 696-701.
[55] G. Tan, L.-D. Zhao, M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116 (2016) 12123-12149.
[56] J.L. Mi, T.J. Zhu, X.B. Zhao, J. Ma, Nanostructuring and thermoelectric properties of bulk skutterudite compound CoSb3, J. Appl. Phys. 101 (2007) 054314.
[57] J. Yang, X. Shi, S. Bai, W. Zhang, L. Chen, US patent 0071741 A1, 2010 March 25.
[58] M. Scholdt, H. Do, J. Lang, A. Gall, A. Colsmann, U. Lemmer, Organic semiconductors for thermoelectric applications, J. Electron. Mater. 39 (2010) 1589-1592.
[59] L. Jun, L.M. Zhang, L. He, X.F. Tang, Synthesis and thermoelectric properties of polyaniline, J. Wuhan Univ. Technol. Mater. Sci. Ed. 18 (2003) 53-55.
[60] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Copper ion liquid-like thermoelectrics, Nat. Mater. 11 (2012) 422-425.
[61] B. Yu, W. Liu, S. Chen, H. Wang, H. Wang, G. Chen, H. Ren, Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer, Nano Energy. 1 (2012) 472-478.
[62] Y. He, T. Day, T.S. Zhang, H. Liu, X. Shi, L. Chen, G.J. Snyder, High thermoelectric performance in non-toxic earth-abundant copper sulfide, Adv. Mater. 26 (2014) 3974-3978.
[63] Y. He, T. Zhang, X. Shi, S.H. Wei, L.D. Chen, High thermoelectric performance in copper telluride, NPG Asia Mater. 7 (2015) 210.
[64] C. Gao, G. Chen, Conducting polymer/carbon particle thermoelectric composites: Emerging green energy materials, Compos. Sci. Technol. 124 (2016) 52-70.
[65] D.M. Jundale, S.T. Navale, G.D. Khuspe, D.S. Dalavi, P.S. Patil, V.B. Patil, Polyaniline-CuO hybrid nanocomposites: synthesis, structural, morphological, optical and electrical transport studies, J. Mater. Sci.: Mater. Electron. 24 (2013) 3526-3535.
[66] B. Plochmann, S. Lang, R. Ruger, R. Moos, Optimization of thermoelectric properties of metal-oxide-based polymer composites, J. Appl. Polym. Sci. 131 (2014) 40038.
[67] J.H. We, S.J. Kim, B.J. Cho, Hybrid composite of screen printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator, Energy. 73 (2014) 506-512.
[68] P. Aranguren, A. Roch, L. Stepien, M. Abt, M. von Lukowicz, I. Dani, D. Astrain, Optimized design for flexible polymer thermoelectric generators, Appl. Therm. Eng. 102 (2016) 402-411.
[69] L. Wang, D. Wang, G. Zhu, J. Li, F. Pan, Thermoelectric properties of conducting polyaniline/graphite composites, Mater. Lett. 65 (2011) 1086-1088.
[70] Z. Zhu, C. Liu, Q. Jiang, H. Shi, J. Xu, F. Jiang, J. Xiong, E. Liu, Green DES mixture as a surface treatment recipe for improving the thermoelectric properties of PEDOT:PSS films, Synth. Met. 209 (2015) 313-318.
[71] L. Su, Y. X. Gan, Experimental study on synthesizing TiO2 nanotube/polyaniline (PANI) nanocomposites and their thermoelectric and photosensitive property characterization, Composites Part B: Eng. 43 (2012) 170-182.
[72] C. H. Park, S. K. Jang, F. S. Kim, Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions, Appl. Surf. Sci. 429 (2018) 121-127.
[73] H. Okamoto, T. Kotaka, Structure and properties of polyaniline films prepared via electrochemical polymerization: Effect of pH in electrochemical polymerization media on the primary structure and acid dissociation constant of product polyaniline films, Polymer. 39 (1998) 4349-4358.
[74] S.L. Bai, Y.L. Tian, M. Cui, J.H. Sun, Y. Tian, R.X. Luo, A.F. Chen, D.Q. Li, Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature, Sens. Actuators B: Chem. 226 (2016) 540-547.
[75] S. Mu, J. Kan, J. Lu, L. Zhuang, Interconversion of polarons and bipolarons of polyaniline during the electrochemical polymerization of aniline, J. Electroanal. Chem. 446 (1998) 107-112.
[76] J. Zhang, L. Kong, B. Wang, Y. Luo, L. Kang, In-situ electrochemical polymerization of multi-walled carbon nanotube/ polyaniline composite films for electrochemical supercapacitors, Synth. Met. 159 (2009) 260-266.
[77] W. Qiu, R. Zhou, L. Yang, Q. Liu, Lithium-ion rechargeable battery with petroleum coke anode and polyaniline cathode, Solid State Ionics. 86 (1998) 903-906.
[78] X. Zhang, L. Ji, S. Zhang, W. Yang, Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor, J. Power Sources. 173 (2007) 1017-1023.
[79] M. Joubert, M. Bouhadid, D. Begue, P. Iratcabal, N. Redon, J. Desbrieres, S. Reynaud, Conducting polyaniline composite: from syntheses in waterborne systems to chemical sensor devices, Polymer. 51 (2010) 1716-1722.
[80] J. Jang, J. Ha, K. Kim, Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer, Thin Solid Films. 516 (2008) 3152-3156.
[81] X. Yang, B. Li, H. Wang, B. Hou, Anticorrosion performance of polyaniline nanostructures on mild steel, Prog. Org. Coat. 69 (2010) 267-271.
[82] L. Zhao, L. Zhao, Y. Xu, T. Qiu, L. Zhi, G. Shi, Polyaniline electrochromic devices with transparent graphene electrodes, Electrochim. Acta, 55 (2009) 491-497.
[83] F. N. Crespilho, R. M. Lost, S. A. Travain, Jr. O. N. Oliverira, V. Zucolotto, Enzyme immobilization on Ag nanoparticles/polyaniline nanocomposites, Biosens. Bioelectron. 24 (2009) 3073-3077.
[84] K. Chatterjee, A. Suresh, S. Ganguly, K. Kargupta, D. Banerjee, Synthesis and characterization of an electro-deposited polyaniline bismuth telluride nanocomposite: A novel thermoelectric material, Mater. Charact. 60 (2009) 1597-1601.
[85] S. Subramanian, P.C. Lekha, D. P. Pddiyan, Enhanced electrical response in Sb2S3 thin films by the inclusion of polyaniline during electrodeposition, Physica B, 405 (2010) 925-931.
[86] H. Hirai, Y. Nakao, N. Toshima, Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol, J. Macromol. Sci. Chem. A.12 (1978) 1117-1141.
[87] N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, Catalytic activity and structural analysis of polymer-protected Au-Pd bimetallic clusters prepared by the simultaneous reduction of HAuCl4 and PdCl2, J. Phys. Chem. 96 (1992) 9927-9933.
[88] N. Toshima, T. Yonezawa, Bimetallic nanoparticles-novel materials for chemical and physical applications, New J. Chem. 22 (1998) 1179-1201.
[89] Y. Shiraishi, N. Toshima, Oxidation of ethylene catalyzed by colloidal dispersions of poly(sodium acrylate)-protected silver nanoclusters, Colloids Surf. A Physicochem. Eng. Asp. 169 (1-3) (2000) 59-66.
[90] H. Zhang, T. Watanabe, M. Okumura, M. Haruta, N. Toshima, Catalytically highly active top gold atom on palladium nanocluster, Nat. Mater. 11 (2012) 49-52.
[91] B. Corain, G. Schmid, N. Toshima (Eds.), Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size-Control, Elsevier, Amsterdam, 2011.
[92] N. Toshima, N. Jiravanichanun, H. Marutani, Organic thermoelectric materials composed of conducting polymers and metal nanoparticles, J. Electron. Mater. 41 (2012) 1735-1742.
[93] T. Yonezawa, T.T. Kunitake, Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization, Colloids Surf. A Physicochem. Eng. Asp. 149 (1999) 193-199.
[94] N. Toshima, N. Jiravanichnun, Improvement of thermoelectric properties of PEDOT/PSS films with addition of gold nanoparticles: Enhancement of Seebeck coefficient, J. Electron. Mater. 42 (2013) 1882-1887.
[95] A. Yoshida, N. Toshima, Gold nanoparticle and gold nano rod embedded PEDOT:PSS thin films as organic thermoelectric materials, J. Electron. Mater. 43 (2014) 1492-1497.
[96] A. Yoshida, N. Toshima, Thermoelectric properties of hybrid thin films of PEDOT-PSS and silver nanowires, J. Electron. Mater. 45 (2016) 2914-2919.
[97] S. Ichikawa, N. Toshima, Improvement of thermoelectric properties of composite films of PEDOT-PSS with xylitol by means of stretching and solvent treatment, Polym. J. 47 (2015) 522-526.
[98] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials, Adv. Mater. 19 (2007) 1043-1053.
[99] M. Prato, Fullerene chemistry for materials science applications, J. Mater. Chem. 7 (1997) 1097-1109.
[100] M.I. Katsnelson, Graphene: Carbon in two dimensions, Mater. Today. 10 (2007) 20-27.
[101] K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes, Small. (2005) 180-192.
[102] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58.
[103] S. Hata, T. Omura, K. Oshima, Y. Du, Y. Shiraishi, N. Toshima, Novel preparation of poly (3, 4-ethylenedioxythiophene)-poly (styrene sulfonate)-protected noble metal nanoparticles as organic-inorganic hybrid thermoelectric materials, Bull. Soc. Photogr. Imaging. 27 (2017) 13-18.
[104] Y. Nakai, K. Honda, K. Yanagi, H. Kataura, T. Kato, T. Yamamoto, Y. Maniwa, Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film, Appl. Phys. Exp. 7 (2014) 025103.
[105] C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, G.J. Snyder, R. Yang, K. Koumoto, Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2, Nat. Mater. 14 (2015) 622-627.
[106] T. Fukumaru, T. Fujigaya, N. Nakashima, Development of n-type cobaltocene encapsulated carbon nanotubes with remarkable thermoelectric property, Sci. Rep. 5 (2015) 7951.