Fundamentals Concepts of Topological Insulators: Historical Overview and Single Crystal Growth Techniques


Fundamentals Concepts of Topological Insulators: Historical Overview and Single Crystal Growth Techniques

Tanmay Bhongade, Anupras Manwar, Kunal Kumar, Prasad Kulkarni, Ramireddy Boppella, Suvarna R. Bathe, Aniruddha Chatterjee, Shravanti Joshi

Topological insulating materials symbolize a novel matter in the form of quantum states distinguished by distinctive core and surfaces mainly arising from macroscopic wave functions. The bulk property of the insulator grants its band structure exotic features owing to which, the material depicts an insulating core and conducting surface. Such inherent characteristics ensure that the electrons propagate along the surface. Herein, we present an informative review of topological insulating materials focusing on the basic theories, and synthesis routes to achieve single crystal structures and material properties. At the start, a historical perspective is provided with a brief discussion on topological insulators reported to date. Thereafter, a detailed account is bestowed to understand different preparation methodologies from viewpoints of defect engineering and prototype fabrication in order to realize high-quality topological insulators for subsequent roles in customized applications in the fields of quantum computing, catalysis, optoelectronic and magnetic devices. Lastly, a future outlook and the impact of topological insulators in various fields of physics, chemistry, and engineering are furnished toward the end of the chapter.

Quantum, Band Gap, Insulator, Symmetry, Surface States, Wave Functions

Published online 12/15/2023, 14 pages

Citation: Tanmay Bhongade, Anupras Manwar, Kunal Kumar, Prasad Kulkarni, Ramireddy Boppella, Suvarna R. Bathe, Aniruddha Chatterjee, Shravanti Joshi, Fundamentals Concepts of Topological Insulators: Historical Overview and Single Crystal Growth Techniques, Materials Research Foundations, Vol. 154, pp 172-185, 2024


Part of the book on Topological Insulators

[1] M. Z. Hasan, C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010) 3045.
[2] J. E. Moore, The birth of topological insulators, Nature 464 (2010) 194.
[3] X.L. Qi, S.C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83 (2011) 1057.
[4] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B, 78 (2008) 195125.
[5] Y. Ando, Topological insulator materials, J. Phys. Soc. Japan 82 (2013) 102001.
[6] F. Wilczek, Majorana returns, Nat. Phys. 5 (2009) 614.
[7] L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100 (2008) 096407.
[8] Neil Savage, Topology shapes a search for new materials, ACS Cent. Sci. 4 (2018) 523-526.
[9] B. A. Volkov, O. A. Pankratov, Two-dimensional massless electrons in an inverted contact, JETP Lett. 42 (1985) 178-181.
[10] O.A. Pankratov, S.V. Pakhomov, B.A. Volkov, Supersymmetry in heterojunctions: Band-inverting contact on the basis of Pb1-xSnxTe and Hg1-xCdxTe, Solid State Commun. 61 (1987) 93-96.
[11] C. L. Kane, E. J. Mele, Quantum spin hall effect in graphene, Phys. Rev. Lett. 95 (2005) 226801.
[12] A. B. Bernevig, S.-C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96 (2006) 106802.
[13] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.L. Qi, S.C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science. 318 (2007) 766-770.
[14] X.-L. Qi, T. L. Hughes, S.-C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B, 78 (2008) 195424.
[15] A. M. Essin, J. E. Moore, D. Vanderbilt, Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett. 102 (2009) 146805.
[16] F. Wilczek, Frank, Two applications of axion electrodynamics, Phys. Rev. Lett. 58 (1987) 1799-1802.
[17] L. Wu, M. Salehi, N. Koirala, J. Moon, S. Oh, N. P. Armitage, Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator, Science. 354 (2016) 1124-1127.
[18] E. S. Reich, Hopes surface for exotic insulator: Findings by three teams may solve a 40-year-old mystery, Nature: Springer Science and Business Media LLC, 492 (2012) 165.
[19] M. Dzero, K. Sun, V. Galitski, P. Coleman, Topological Kondo insulators, Phys. Rev. Lett. 104 (2010) 106408.
[20] A. R. Mellnik, J. S. Lee, A. Richardella, J. L. Grab, P. J. Mintun, M. H. Fischer, A. Vaezi, A. Manchon, E. A. Kim, N. Samarth, D. C. Ralph, Spin-transfer torque generated by a topological insulator, Nature 511 (2014) 449-451.
[21] N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C. Felser, Topological quantum materials from the viewpoint of chemistry, Chem. Rev. 121 (2021) 2780-2815
[22] M. C. Hatnean, M. R. Lees, D. M. Paul, G. Balakrishnan, Large high-quality single-crystals of the new topological Kondo insulator SmB6, Sci. Rep. 3 (2013) 3071.
[23] B. S. Tan, Y. T. Hsu, B. Zeng, M. C. Hatnean, N. Harrison, Z. Zhu, M. Hartstein, M. Kiourlappou, A. Srivastava, M. D. Johannes, Unconventional Fermi surface in an insulating state, Science 349 (2015) 287.
[24] Y. Kaneko, Y. Tokura, Floating zone furnace equipped with a high power LASER of 1 kW composed of five smart beams, J. Cryst. Growth 533 (2020) 125435.
[25] M. G. Kanatzidis, R. Pöttgen, W. Jeitschko, The metal flux: A preparative tool for the exploration of intermetallic compounds. Angew. Chem. Int. Ed. 44 (2005) 6996−7023.
[26] D. E. Bugaris, H. C. Loye, Materials discovery by flux crystal growth: Quaternary and higher order oxides. Angew. Chem. Int. Ed. 51 (2012) 3780−3811.
[27] P. C. Canfield, Z. Fisk, Growth of single crystals from metallic fluxes. Philos. Mag. B, 65 (1992) 1117−1123.
[28] H. Okamoto, T. Massalski, Binary alloy phase diagrams; ASM International: Materials Park, OH, 1990.
[29] P. Gille, T. Ziemer, M. Schmidt, K. Kovnir, U. Burkhardt, M. Armbrüster, Growth of large PdGa single crystals from the melt, Intermetallics 18 (2010) 1663−1668.
[30] V. A. Dyadkin, S. V. Grigoriev, D. Menzel, D. Chernyshov, V. Dmitriev, J. Schoenes, S. V. Maleyev, E. V. Moskvin, H. Eckerlebe, Control of chirality of transition-metal monosilicides by the Czochralski method. Phys. Rev. B: Condens. Matter Mater. Phys. 84 (2011) 014435.
[31] N. B. M. Schröter, S. Stolz, K. Manna, F. de Juan, M. G. Vergniory, J. A. Krieger, D. Pei, T. Schmitt, P. Dudin, T. K.; Kim, Observation and control of maximal Chern numbers in a chiral topological semimetal, Science 369 (2020) 179−183.
[32] P. Sessi, F. R. Fan, F. Kuster, K. Manna, N. B. M. Schroter, J. R. Ji, S. Stolz, J. A. Krieger, D. Pei, T. K. Kim, P. Dudin, C. Cacho, R. Widmer, H. Borrmann, W. Shi, K. Chang, Y. Sun, C. Felser, S. S. P. Parkin, Direct observation of handedness-dependent quasiparticle interference in the two enantiomers of topological chiral semimetal PdGa. Nat. Commun. 11 (2020) 3507.
[33] Z. Li, H. Chen, S. Jin, D. Gan, W. Wang, L. Guo, X. Chen, Weyl semimetal TaAs: Crystal growth, morphology, and thermodynamics. Cryst. Growth Des. 16 (2016) 1172−1175.
[34] F. Arnold, C. Shekhar, S. C. Wu, Y. Sun, R. D. dos Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, B. Yan, Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7 (2016)11615.
[35] J. Wang, P. Yox, K. Kovnir, Flux growth of phosphide and arsenide Crystals. Front. Chem. 8 (2020) 00186.
[36] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, Observation of the chiral-anomaly-induced negative magnetoresistance in 3d Weyl semimetal TaAs. Phys. Rev. X 5 (2015) 031023.
[37] Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, V. Suß, M. Schmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Forster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, S. A. Medvedev, Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7 (2016) 11038.
[38] D. Schulz, S. Ganschow, D. Klimm, K. Struve, Inductively heated Bridgman method for the growth of zinc oxide single crystals. J. Cryst. Growth 310 (2008) 1832−1835.
[39] K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, Y. Nakamura, Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J. Cryst. Growth 447 (2016) 36−41.
[40] B. Jariwala, D. Voiry, A. Jindal, B. A. Chalke, R. Bapat, A. Thamizhavel, M. Chhowalla, M. Deshmukh, A. Bhattacharya, Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 28 (2016) 3352−3359.
[41] S. Johnsen, Z. Liu, J. A. Peters, J. H. Song, S. C. Peter, C. D. Malliakas, N. K. Cho, H. Jin, A. J. Freeman, B. W. Wessels, Thallium chalcogenide-based wide-band-gap semiconductors: TlGaSe2 for radiation detectors. Chem. Mater. 23 (2011) 3120−3128.
[42] L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, P. V. Dravid, M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508 (2014) 373−377.