Research on the Effectiveness of a Visual Protection of Military Objects in Field Conditions and in a Virtual Environment

Research on the Effectiveness of a Visual Protection of Military Objects in Field Conditions and in a Virtual Environment


download PDF

Abstract: The article presents two methodologies for testing the effectiveness of camouflaging military equipment. The tested objects were camouflaged with deforming camouflage dedicated to the environment and season. The tests covered the visible spectrum and were carried out both in real conditions – training ground, and in a virtual environment – on a specially prepared calibrated stand, characterized by compliance with real conditions and human perception of vision – presented colors, as well as in terms of the amount of information and detail rendering. These two test methods were compared, attention was drawn to the high correlation of results and to some characteristic properties of both separately. The work confirms the legitimacy of developing and improving virtual research methods as supporting in the design and testing of modern camouflage patterns, especially at the initial stage of pattern design. It can also be useful when assessing masking systems in other ranges of electromagnetic radiation: UV, near infrared, or thermal range.

Military Camouflage, Visual Protection, Field Conditions

Published online 9/1/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PRZYBYŁ Wojciech, MAZURCZUK Robert, SZCZODROWSKA Bogusława, JANUSZKO Adam, Research on the Effectiveness of a Visual Protection of Military Objects in Field Conditions and in a Virtual Environment, Materials Research Proceedings, Vol. 34, pp 380-389, 2023


The article was published as article 44 of the book Quality Production Improvement and System Safety

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] M. Laprus (ed.). Leksykon wiedzy wojskowej, MON, Warszawa, 1979.
[2] Maskowanie wojsk i wojskowej infrastruktury obronnej, DD/3.20, MON/SG WP, Warszawa 2010.
[3] R. Bogacki. Maskowanie kolorem. Mat. III Konf. Naukowo Technicznej, WITI 1997, vol.1, p.108.
[4] Instrukcja o maskowaniu wojsk. Sztab generalny WP, MON, Warszawa, 1977.
[5] Norma Obronna NO-80-A200, Farby specjalne do malowania maskującego. Wymagania i metody badań, MON, Warszawa, 2014.
[6] W. Przybył, I. Plebankiewicz, A. Januszko, C. Śliwiński, W. Malej. Zobrazowania środowiska oraz modele obiektów wojskowych w wirtualnej metodzie oceny skuteczności maskowania, in: Wybrana problematyka w technologiach inżynierii mechanicznej, (2020), Politechnika Świętokrzyska, Kielce, 234-242.
[7] C. Murphy, B. Fraster, F. Bunting. Real World Color Management, 2nd Edition, Peachpit Press Publications, 2004. ISBN 978-0321267221
[8] Canon Inc. Technical datasheet for Canon EOS 50D Mark III.
[9] P. Francuz. Imagia, w kierunku neurokognitywnej teorii obrazu, Wyd. KUL, Lublin, 2013. ISBN 978-83-7702-706-6
[10] NATO RTO, Guidelines for Camouflage Assessment Using Observers (RTO-AG-SCI 095), NATO RTO, 2006.
[11] R. Ulewicz. Outsorcing quality control in the automotive industry, MATEC Web of Conf. 183 (2018) art.03001.
[12] R. Ulewicz, F. Nový. Quality management systems in special processes, Transp. Res. Procedia 40 (2019) 113-118.
[13] A. Pacana et al. Analysis of quality control efficiency in the automotive industry, Transp. Res. Procedia 55 (2021) 691-698.
[14] N. Radek, R. Dwornicka. Fire properties of intumescent coating systems for the rolling stock, Commun. – Sci. Lett. Univ. Zilina 22 (2020) 90-96.
[15] N. Radek et al. The influence of plasma cutting parameters on the geometric structure of cut surfaces, Mater. Res. Proc. 17 (2020) 132-137. 20
[16] N. Radek et al. Technology and application of anti-graffiti coating systems for rolling stock, METAL 2019 28th Int. Conf. Metall. Mater. (2019) 1127-1132. ISBN 978-8087294925
[17] N. Radek et al. The effect of laser beam processing on the properties of WC-Co coatings deposited on steel. Materials 14 (2021) art. 538.
[18] N. Radek et al. Formation of coatings with technologies using concentrated energy stream, Prod. Eng. Arch. 28 (2022) 117-122.
[19] N. Radek et al. The impact of laser welding parameters on the mechanical properties of the weld, AIP Conf. Proc. 2017 (2018) art.20025.
[20] N. Radek et al. Properties of Steel Welded with CO2 Laser, Lecture Notes in Mechanical Engineering (2020) 571-580.
[21] S. Marković et al. Exploitation characteristics of teeth flanks of gears regenerated by three hard-facing procedures, Materials 14 (20210 art. 4203.
[22] M. Scendo et al. Purine as an effective corrosion inhibitor for stainless steel in chloride acid solutions, Corr. Rev. 30 (2012) 33-45.
[23] T. Lipinski, J. Pietraszek. Influence of animal slurry on carbon C35 steel with different microstructure at room temperature, Engineering for Rural Development 21 (2022) 344-350.
[24] T. Lipiński, J. Pietraszek. Corrosion of the S235JR Carbon Steel after Normalizing and Overheating Annealing in 2.5% Sulphuric Acid at Room Temperature, Mater. Res. Proc. 24 (2022) 102-108.
[25] N. Radek. Determining the operational properties of steel beaters after electrospark deposition, Eksploatacja i Niezawodnosc 44 (2009) 10-16.
[26] N. Radek, J. Pietraszek, A. Gadek-Moszczak, Ł.J. Orman, A. Szczotok. The morphology and mechanical properties of ESD coatings before and after laser beam machining, Materials 13 (2020) art. 2331.
[27] N. Radek et al. The effect of laser treatment on operational properties of ESD coatings, METAL 2021 30th Ann. Int. Conf. Metall. Mater. (2021) 876-882.
[28] N. Radek et al. Microstructure and tribological properties of DLC coatings, Mater. Res. Proc. 17 (2020) 171-176.
[29] N. Radek et al. Influence of laser texturing on tribological properties of DLC coatings, Prod. Eng. Arch. 27 (2021) 119-123.
[30] N. Radek et al. Operational properties of DLC coatings and their potential application, METAL 2022 – 31st Int. Conf. Metall. Mater. (2022) 531-536.
[31] J. Pietraszek et al. The principal component analysis of tribological tests of surface layers modified with IF-WS2 nanoparticles, Solid State Phenom. 235 (2015) 9-15.
[32] J. Pietraszek, E. Skrzypczak-Pietraszek. The uncertainty and robustness of the principal component analysis as a tool for the dimensionality reduction. Solid State Phenom. 235 (2015) 1-8.
[33] J. Pietraszek, A. Szczotok, N. Radek. The fixed-effects analysis of the relation between SDAS and carbides for the airfoil blade traces. Archives of Metallurgy and Materials 62 (2017) 235-239.
[34] R. Dwornicka, J. Pietraszek. The outline of the expert system for the design of experiment, Prod. Eng. Arch. 20 (2018) 43-48.
[35] J. Pietraszek, N. Radek, A.V. Goroshko. Challenges for the DOE methodology related to the introduction of Industry 4.0. Prod. Eng. Arch. 26 (2020) 190-194.
[36] J. Pietraszek. The modified sequential-binary approach for fuzzy operations on correlated assessments, LNAI 7894 (2013) 353-364.
[37] J. Pietraszek et al. Non-parametric assessment of the uncertainty in the analysis of the airfoil blade traces, METAL 2017 26th Int. Conf. Metall. Mater. (2017) 1412-1418. ISBN 978-8087294796
[38] J. Pietraszek et al. The non-parametric approach to the quantification of the uncertainty in the design of experiments modelling, UNCECOMP 2017 Proc. 2nd Int. Conf. Uncert. Quant. Comput. Sci. Eng. (2017) 598-604.