Advances in the Treatment of Waste Derived from Electronic Components: The Future of Cars: An Assessment through Raw Materials


Advances in the Treatment of Waste Derived from Electronic Components: The Future of Cars: An Assessment through Raw Materials

A. Ortego, A. Valero, I. García-Díaz, F.A. López, M. Iglesias-Émbil

A conventional car needs more than 50 different types of metals, being critical most of them. In addition, the renovation of current cars for cleaner, safer and more comfortable ones will increase the critical metal demand to manufacture some components: batteries, LEDs for lighting, permanent magnets for motors, electronic units and different kinds of sensors. As a result, the availability of enough raw materials is a matter of concern for the automobile industry so new approaches from resource efficiency must be urgently applied. This chapter presents a review of the car´s resource efficiency from those metals needed to be manufactured with special attention to those used in electronic components. To accomplish with this purpose, three main goals have been established in this study: (1) analyzing car compositions and the most strategical metals for the automotive industry, (2) examining possible raw material bottlenecks before 2050, and ultimately (3) studying the effectiveness of current recycling policies and alternatives from eco-design.

Electronic Components, Car Industry

Published online 8/10/2023, 57 pages

Citation: A. Ortego, A. Valero, I. García-Díaz, F.A. López, M. Iglesias-Émbil, Advances in the Treatment of Waste Derived from Electronic Components: The Future of Cars: An Assessment through Raw Materials, Materials Research Foundations, Vol. 149, pp 311-367, 2023


Part of the book on New Materials for a Circular Economy

[1] M. Iglesias-Émbil, A. Valero, A. Ortego, M. Villacampa, J. Vilaró, and G. Villalba, Raw material use in a battery electric car – a thermodynamic rarity assessment, Resour Conserv Recycl. 158 (2020)
[2] Information on:
[3] Information on:
[4] A. Valero, A. Valero, Thanatia, the destiny of the Earth’s mineral resources. 2014.
[5] K. Sperlich, Open Public Consultation on the ELV Evaluation (Directive 2000/53/EC) Recommendations of German Advisory Council on the Environment (SRU-Sachverständigenrat für Umweltfragen), 2019.
[6] A. Ortego, A. Valero, A. Valero, M. Iglesias, and M. Villacampa, Strategic metal ranking for the automobile sector, in: Sustainable Development of Energy, Water and Environment Systems, 2018.
[7] SIGRAUTO, Age of ELV treatments, 2018.
[8] International Energy Agency, Energy Technology Perspectives: Scenarios & Strategies To 2050, 2010.
[9] International Organization of Motor Vehicle Manufacturers, Sales statistics, 2016.
[10] International Energy Agency, Energy Technology Perspectives: Scenarios & Strategies to 2050. 2010.
[11] International Organization of Motor Vehicle Manufacturers, Sales statistics, 2016.
[12] G. Calvo, G. Mudd, A. Valero, A. Valero, Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources. 5 (2016)
[13] European Commission, The raw materials initiative – meeting our critical needs for growth and jobs in Europe. Communication from the Commission to the European Parliamente and the Council. COM (2008) 699 final. 2008.
[14] European Commission, Study on the EU’s list of Critical Raw Materials (2020) Final Report, 2020.
[15] G. Calvo, A. Valero, L. G. Carmona, K. Whiting, Physical Assessment of the Mineral Capital of a Nation: The Case of an Importing and an Exporting Country, Resources, 4 (2015) 857-870.
[16] R. L. Moss, E. Tzimas, P. Willis, J. Arendorf, L. T. Espinoza, Critical metals in the path towards the decarbonisation of the EU energy sector. Assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies. European Commission Joint Research Centre, 2013.
[17] D. G. Angerer, Raw materials for emerging technologies. A report commissioned by the German Federal Ministry of Economics and Technology, 2009.
[18] G. Calvo, A. Valero, A. Valero, Thermodynamic approach to evaluate the criticality of raw materials and its application through a material flow analysis in Europe, J. Ind. Ecol. 22 (2017) 839-852.
[19] M. Vidovic, B. Dimitrijevic, B. Ratkovic, V. Simic, A novel covering approach to positioning ELV collection points, Resour. Conserv. Recycl. 57, (2011) 1-9.
[20] H. Ohno, K. Matsubae, K. Nakajima, Y. Kondo, S. Nakamura, T. Nagasaka, Toward the efficient recycling of alloying elements from end of life vehicle steel scrap, Resour. Conserv. Recycl. 100 (2015) 11-20.
[21] A. Ortego, A. Valero, A. Valero, M. Iglesias, Downcycling in automobile recycling process: A thermodynamic assessment, Resour. Conserv. Recycl. 136 (2018)
[22] J. Li, M. Barwood, S. Rahimifard, Robotic disassembly for increased recovery of strategically important materials from electrical vehicles, Robot. Comput. Integr. Manuf. 50 (2018) 203-212.
[23] I. Arda, E. Rene, E. D. van Hullebusch, P. Lens, Electronic waste as a secondary source of critical metals: Management and recovery technologies, Resour. Conserv. Recycl. 135, (2018) 296-312.
[24] A. K. Awasthi, J. Li, An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE, Resour. Conserv. Recycl. 126 (2017) 228-239.
[25] J. Cui, L. Zhang, Metallurgical recovery of metals from electronic waste: A review, J. Hazard. Mater. 158 (2008) 228-256.
[26] F. Ardente, F. Mathieux, M. Recchioni, Recycling of electronic displays: Analysis of pre-processing and potential ecodesign improvements, Resour. Conserv. Recycl. 92 (2014) 158-171.
[27] K. E. Daehn, A. Cabrera Serrenho, J. M. Allwood, How Will Copper Contamination Constrain Future Global Steel Recycling? Environ. Sci. Technol. 51 (2017) 6599-6606.
[28] H. M. & Minerals, 2018. Scrap contaminants. Retrieved from:
[29] IDIS, 2016. International Dismantling Information System. Retrieved from:
[30] A. B. Patil, M. Tarik, R. P. W. J. Struis, C. Ludwig, Exploiting end-of-life lamps fluorescent powder e-waste as a secondary resource for critical rare earth metals, Resour. Conserv. Recycl. 164 (2021) 105153.
[31] A. B. Botelho Junior, D. C. R. Espinosa, and J. A. S. Tenório, The use of computational thermodynamic for yttrium recovery from rare earth elements-bearing residue, J. Rare Earths. 39 (2021) 201-207.
[32] J. Cui, E. Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, J Hazard Mater, 99 (2003) 243-263.
[33] A. Khaliq, M. Rhamdhani, G. Brooks, S. Masood, Metal extraction processes for electronic waste and existing industrial routes: A review and australian perspective, Resources, 3 (2014) 152-179.
[34] A. Marra, A. Cesaro, and V. Belgiorno, Separation efficiency of valuable and critical metals in WEEE mechanical treatments, J. Clean. Prod. 186 (2018) 490-498.
[35] R. Nithya, C. Sivasankari, A. Thirunavukkarasu, Electronic waste generation, regulation and metal recovery: a review, Environ. Chem. Lett. 19 (2021) 1347-1368.
[36] S. Zhang E. Forssberg, Mechanical separation-oriented characterization of electronic scrap, Resour Conserv Recycl. 21 (1997) 247-269.
[37] C. Lee, C. Chang, K. Fan, T. Chang, An overview of recycling and treatment of scrap computers, J Hazard Mater. 114 (2004) 93-100.
[38] I. Dalrymple, N. Wright, R. Kellner, N. Bains, K. Geraghty, M. Goosey, L. Lightfoot, An integrated approach to electronic waste (WEEE) recycling, Circuit World, 33 (2007) 52-58.
[39] M. Kaya, Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes, J. Waste Manag. 57 (2016) 64-90.
[40] S. Zhang, E. Forssberg, Mechanical separation-oriented characterization of electronic scrap, Resour. Conserv. Recycl. 21 (1997) 247-269.
[41] Shunli Zhang, E. Forssberg, Mechanical recycling of electronics scrap – the current status and prospects, Waste. Manag. Res. 16 (1998) 119-128.
[42] J. Van Yken, N. J. Boxall, K. Y. Cheng, A. N. Nikoloski, N. R. Moheimani, A. H. Kaksonen, E-waste recycling and resource recovery: A review on technologies, barriers and enablers with a focus on oceania, Metals. 11 (2021)
[43] M. Sarvar, M. M. Salarirad, M. A. Shabani, Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods, Waste Manage. 45 (2015) 246-257.
[44] S. C. Chakraborty, M. W. U. Zaman, M. Hoque, M. Qamruzzaman, J. U. Zaman, D. Hossain, B. K. Pramanik, L. N. Nguyen, L. D. Nghiem, M. Mofijur, M. I. H. Mondal, J. A. Sithi, S. M. S. Shahriar, M. A. H. Johir, M. B. Ahmed, Metals extraction processes from electronic waste: constraints and opportunities, Environ. Sci. Pollut. Res. 29 (2022) 32651-32669.
[45] B. Ebin, M. I. Isik, Pyrometallurgical processes for the recovery of metals from WEEE, in WEEE Recycling, Elsevier, 2016, pp. 107-137.
[46] E. Ma, Recovery of waste printed circuit boards through pyrometallurgy, in Electronic waste management and treatment technology, Elsevier, 2019, pp. 247-267.
[47] R. Kahhat, E. Williams, Product or waste? Importation and end-of-life processing of computers in Peru, Environ. Sci. Technol. 43 (2009) 6010-6016.
[48] C. Hagelüken, Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery, Erzmetall. 59 (2006) 152-161.
[49] M. Kaya, Electronic Waste and Printed Circuit Board Recycling Technologies, Springer, 2019.
[50] B. S. H. Veldbuizen, Mining discarded electronics, Industrial Environment. 17 (1994) 7.
[51] J. Cui. L. Zhang, Metallurgical recovery of metals from electronic waste: A review, J. Hazard. Mater. 158 (2008) 228-256.
[52] E. Hsu, K. Barmak, A. C. West, A.-H. A. Park, Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies, Green Chem. 21 (2019) 919-936.
[53] J. K. M. V. Ahamed Ashiq, Hydrometallurgical recovery of metals from E-waste, in Electronic waste management and treatment technology, Elsevier I., 2019, pp. 225-246.
[54] D. Andrews, A. Raychaudhuri, C. Frias, Environmentally sound technologies for recycling secondary lead, J. Power. Sources. 88 (2000) 124-129.
[55] M. Sadegh Safarzadeh, M. S. Bafghi, D. Moradkhani, M. Ojaghi Ilkhchi, A review on hydrometallurgical extraction and recovery of cadmium from various resources, Miner. Eng. 20 (2007) 211-220.
[56] M. Sethurajan, E. D. van Hullebuscha , D. Fontana, A Akcil, H. Deveci, B. Batinic, J P. Leal, T. A. Gasche, M. A. Kucuker, K. Kuchta, I. F. F. Neto, H. M. V. M. Soares, A. Chmielarz, Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes – a review, Crit. Rev. Environ. Sci. Technol. 49 (2019) 212-275.
[57] G. Hilson, A. J. Monhemius, Alternatives to cyanide in the gold mining industry: what prospects for the future? J. Clean. Prod. 14 (2006) 1158-1167.
[58] R. W. R. Dorin, Determination of leaching rates of precious metals by electrochemical techniques, J. Appl. Electrochem. 21 (1991) 419.
[59] F. Korte, M. Spiteller, F. Coulston, The cyanide leaching gold recovery process is a nonsustainable technology with unacceptable impacts on ecosystems and humans: the disaster in Romania, Ecotoxicol. Environ. Saf. 46(2000) 241-245.
[60] D. Pant, D. Joshi, M. K. Upreti, R. K. Kotnala, Chemical and biological extraction of metals present in E waste: A hybrid technology, J. Waste. Manag. 32 (2012) 979-990.
[61] M. Gökelma, A. Birich, S. Stopic, B. Friedrich, A review on alternative gold recovery re-agents to cyanide, J. mater. sci. chem. Eng. 04 (2016) 8-17.
[62] M. Sahin, A. Akcil, C. Erust, S. Altynbek, C. S. Gahan, A. Tuncuk, A potential alternative for precious metal recovery from E-waste: Iodine leaching, Sep Sci Technol, 50 (2015) 2587-2595 .
[63] H. Cui, C. Anderson, Hydrometallurgical treatment of waste printed circuit boards: bromine leaching, Metals. 10 (2020) 462.
[64] I. Birloaga, I. De Michelis, F. Ferella, M. Buzatu, F. Vegliò, Study on the influence of various factors in the hydrometallurgical processing of waste printed circuit boards for copper and gold recovery, Waste. Manag. 33 (2013) 935-941.
[65] D. A. Ray, M. Baniasadi, J. E. Graves, A. Greenwood, S. Farnaud, Thiourea leaching: an update on a sustainable approach for gold recovery from E-waste, J. Sustain. Metall. 8 (2022) 597-612.
[66] M. Gurung, B. B. Adhikari, H. Kawakita, K. Ohto, K. Inoue, S. Alam, Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin, Hydrometallurgy. 133 (2013) 84-93.
[67] S. S. Konyratbekova, A. Baikonurova, A. Akcil, Non-cyanide leaching processes in gold hydrometallurgy and iodine-iodide applications: a review, Miner. Process. Extr. Metall. Rev. 36 (2015) 198-212.
[68] C.-H. Lee, L.-W. Tang, S. R. Popuri, A study on the recycling of scrap integrated circuits by leaching, Waste. Manag. Res. 29 (2011) 677-685.
[69] I. Birloaga, F. Vegliò, Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards, J. Environ. Chem. Eng. vol. 4 (2016) 20-29.
[70] F. Z. Zhang XY, Chen L, Review on gold leaching from PCB with non-cyanide leach reagents, Non-ferr. Met. 61 (2009) 72-76.
[71] M. G. Aylmore, D. M. Muir, Thermodynamic analysis of gold leaching by ammoniacal thiosulfate using Eh/pH and speciation diagrams, Miner. Metall. Process. 18 (2001) 221-227.
[72] F. Arslan, B. Sayiner, Extraction of gold and silver from turkish gold ore by ammoniacal thiosulphate leaching, Miner. Process. Extr. Metall. Rev. 29 (2007) 68-82.
[73] E. Ficeriova, J. Balaz, P.Gock, Leaching of gold, silver and accompanying metals from circuit boards (PCBs) waste, Acta. Montan. Slovaca 16 (2011) 128-131.
[74] P. M. H. Petter, H. M. Veit, A. M. Bernardes, Evaluation of gold and silver leaching from printed circuit board of cellphones, J. Waste Manag. 34 (2014) 475-482.
[75] C. J. Oh, S. O. Lee, H. S. Yang, T. J. Ha, M. J. Kim, Selective leaching of valuable metals from waste printed circuit boards, J. Air. Waste. Manage. Assoc. 53 (2003) 897-902.
[76] P. N. Işildar, A. van de Vossenberg, J. Rene, E. R. van Hullebusch, E. D. Lens, Biorecovery of metals from electronic waste in Sustainable Heavy Metal Remediation, Springer, 2017, pp. 241-278.
[77] H. Yang, J. Liu, J. Yang, Leaching copper from shredded particles of waste printed circuit boards, J. Hazard. Mater. 187 (2011) 393-400.
[78] D. Das, S. Mukherjee, M. G. Chaudhuri, Studies on leaching characteristics of electronic waste for metal recovery using inorganic and organic acids and base, Waste. Manag. Res. 39 (2021) 242-249.
[79] T. E. Lister, P. Wang, A. Anderko, Recovery of critical and value metals from mobile electronics enabled by electrochemical processing, Hydrometallurgy. 149 (2014) 228-237.
[80] I. F. F. Neto, H. M. V. M. Soares, Sequential separation of Ag, Al, Cu and Pb from a multi-metal leached solution using a zero waste technology, Sep. Sci. Technol. 53 (2018) 2961-2970.
[81] Ž. Kamberović, M. Ranitović, M. Korać, Z. Andjić, N. Gajić, J. Djokić, S. Jevtić, Hydrometallurgical process for selective metals recovery from waste-printed circuit boards, Metals, 8 (2018) 441.
[82] N. Naseri Joda F. Rashchi, Recovery of ultra-fine grained silver and copper from PC board scraps, Sep. Purif. Techno. 92 (2012) 36-42.
[83] I. F. F. Neto, C. A. Sousa, M. S. C. A. Brito, A. M. Futuro, H. M. V. M. Soares, A simple and nearly-closed cycle process for recycling copper with high purity from end life printed circuit boards, Sep. Purif. Technol. 164 (2016) 19-27.
[84] A. Serpe, A. Rigoldi, C. Marras, F. Artizzu, M. Laura Mercuri, P. Deplano, Chameleon behaviour of iodine in recovering noble-metals from WEEE: towards sustainability and ‘zero’ waste, Green Chem. 17 (2015) 2208-2216.
[85] E. Y. Yazici, H. Deveci, Extraction of metals from waste printed circuit boards (WPCBs) in H2SO4-CuSO4-NaCl solutions, Hydrometallurgy, 139 (2013) 30-38.
[86] P. Cyganowski, K. Garbera, A. Leśniewicz, J. Wolska, P. Pohl, D. Jermakowicz-Bartkowiak, The recovery of gold from the aqua regia leachate of electronic parts using a core-shell type anion exchange resin, J. Saudi Chem. Soc. 21 (2017) 741-750.
[87] P. P. Sheng T. H. Etsell, Recovery of gold from computer circuit board scrap using aqua regia, Waste. Manag. Res. 25 (2007) 380-383.
[88] Y. J. Park, D. J. Fray, Recovery of high purity precious metals from printed circuit boards, J. Hazard. Mater. 164 (2009) 1152-1158.
[89] C. M. Maguyon, M. C. C., Alfafara, C. G., Migo, V. P., Movillon, J. L. Rebancos, Recovery of copper from spent solid printed-circuit-board (PCB) wastes of a PCB manufacturing facility by two-step sequential acid extraction and electrochemical deposition, J. Environ. Sci. Manag. 15 (2012) 17-27.
[90] S. R. La Brooy, H. G. Linge, G. S. Walker, Review of gold extraction from ores, Miner Eng, 7 (1994) 1213-1241.
[91] S. Syed, Recovery of gold from secondary sources-A review, Hydrometallurgy. 115-116 (2012) 30-51.
[92] J. Cui, L. Zhang, Metallurgical recovery of metals from electronic waste: A review, J. Hazard. Mater. 158 (2008) 228-256.
[93] A. Quinet, P., Proost, J., Van Lierde, Recovery of precious metals from lectronic scrap by hydrometallurgical processing routes, Miner. Metall. 8Process. 22 (2005) 17-22.
[94] J. Zhou, P. Zheng, Z. Tie, Technological process for extracting gold, silver and palladium from electronic industry waste, CN Patent 1603432A (C22B 11/00). (2005)
[95] Y. Lu, Q. Song, Z. Xu, Integrated technology for recovering Au from waste memory module by chlorination process: Selective leaching, extraction, and distillation, J. Clean. Prod. 161 (2017) 30-39.
[96] H. M. Xu Qu, Chen Donghui, Chen Liang, Iodine leaching process for recovery of gold from waste PCB, Chin. J. Environ. Eng. 3 (2009) 911-914
[97] M. H. Xu, Q., Chen, D. H., Chen, L., Huang, Gold leaching from waste printed circuit board by iodine process, Non-ferr. Met. 62 (2010) 88-90.
[98] J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation Green Chem. 3 (2001) 156-164.
[99] T. Makanyire, S. Sanchez-Segado, A. Jha, Separation and recovery of critical metal ions using ionic liquids, Adv. Manuf. 4 (2016) 33-46.
[100] D. Zhang, L. Dong, Y. Li, Y. Wu, Y. Ma, B. Yang, Copper leaching from waste printed circuit boards using typical acidic ionic liquids recovery of e-wastes’ surplus value, Waste Manage. 78 (2018) 191-197.
[101] G. Inman, I. C. Nlebedim, D. Prodius, Application of ionic liquids for the recycling and recovery of technologically critical and valuable metals, Energies. 15 (2022) 628.
[102] C. Vallejos-Michea, Y. Barrueto, Y. P. Jimenez, Life cycle analysis of the ionic liquid leaching process of valuable metals from electronic wastes, J. Clean. Prod. 348 (2022) 131357.
[103] Y. Barrueto, P. Hernández, Y. P. Jiménez, J. Morales, Properties and application of ionic liquids in leaching base/precious metals from e-waste. A review. Hydrometallurgy. 212 (2022) 105895.
[104] K. Kurniawan, S. Kim, J. Lee, Ionic liquids-assisted extraction of metals from electronic waste, in Ionic Liquid-Based Technologies for Environmental Sustainability, Elsevier, 2022, pp. 295-329.
[105] A. R. Salvador, Líquidos iónicos a temperatura ambiente: un nuevo medio para las reacciones químicas, Rev. Real Acad. Cienc. Exactas Fis. Nat. 102 (2008) 79-90.
[106] W. L. Choo M. I. Jeffrey, An electrochemical study of copper cementation of gold(I) thiosulfate, Hydrometallurgy. 71 (2004) 351-362.
[107] M. D. Rao, K. K. Singh, C. A. Morrison, J. B. Love, Recycling copper and gold from e-waste by a two-stage leaching and solvent extraction process, Sep. Purif. Technol. 263 (2021) 118400.
[108] F. J. Alguacil, P. Navarro, Non-dispersive solvent extraction of Cu(II) by LIX 973N from ammoniacal/ammonium carbonate aqueous solutions, Hydrometallurgy. 65 (2002) 77-82.
[109] F. J. Alguacil, I. Garcia-Diaz, F. Lopez, and O. Rodriguez, Recycling of copper flue dust via leaching-solvent extraction processing, Desalination. Water. Treat. 56 (2015) 1202-1207.
[110] I. García-Díaz, F. A. López, F. J. Alguacil, Carbon nanofibers: A new adsorbent for copper removal from wastewater, Metals. 8 (2018) 1-13.
[111] F. J. Alguacil, I. Garcia-Diaz, F. Lopez, O. Rodriguez, Removal of Cr(VI) and Au(III) from aqueous streams by the use of carbon nanoadsorption technology, Desalination. Water. Treat. 63 (2017) 351-356.
[112] F. J. Alguacil, La eliminación de metales tóxicos presentes en efluentes líquidos mediante resinas de cambio iónico. Parte XIII: Zinc(II)/H+/Lewatit OC-1026, Rev. de Metal. 56 (2020) 172.
[113] F. J. Alguacil, P. Adeva, M. Alonso, Processing of residual gold (III) solutions via ion exchange, Gold Bull. 38 (2005) 9-13.
[114] P. R. Jadhao, A. Pandey, K. K. Pant, K. D. P. Nigam, Efficient recovery of Cu and Ni from WPCB via alkali leaching approach, J. Environ. Manage. 296 (2021) 113154.
[115] V. Rai, D. Liu, D. Xia, Y. Jayaraman, J.-C. P. Gabriel, Electrochemical approaches for the recovery of metals from electronic waste: a critical review, Recycling. 6, (2021) 53.
[116] A. E. Lewis, Review of metal sulphide precipitation, Hydrometallurgy. 104 (2010) 222-234.
[117] P. Paranjape, M. D. Yadav, Recent advances in the approaches to recover rare earths and precious metals from E‐waste: A mini‐review, Can. J. Chem. Eng. 101 (2023) 1043.
[118] J. Huisman, C. B. Boks, A. L. N. Stevels, Quotes for environmentally weighted recyclability (QWERTY): Concept of describing product recyclability in terms of environmental value, Int. J. Prod. Res. 41 (2003) 3649-3665.
[119] A. V. M. Silveira, M. S. Fuchs, D. K. Pinheiro, E. H. Tanabe, D. A. Bertuol, Recovery of indium from LCD screens of discarded cell phones, Waste Manage. 45 (2015) 334-342.
[120] C.-H. Lee, M.-K. Jeong, M. Fatih Kilicaslan, J.-H. Lee, H.-S. Hong, S.-J. Hong, Recovery of indium from used LCD panel by a time efficient and environmentally sound method assisted HEBM, Waste Manage. 33 (2013) 730-734.
[121] E. Kim, M. Kim, J. Lee, B. D. Pandey, Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process, J. Hazard. Mater. 198, (2011) 206-215.
[122] A. Lewis, R. van Hille, An exploration into the sulphide precipitation method and its effect on metal sulphide removal, Hydrometallurgy, 81 (2006) 197-204.
[123] S.-H. Hu, M.-Y. Xie, Y.-M. Hsieh, Y.-S. Liou, W.-S. Chen, Resource recycling of gallium arsenide scrap using leaching-selective precipitation, Environ. Prog. Sustain. Energy. 34 (2015) 471-475.
[124] J. P. Rabatho, W. Tongamp, Y. Takasaki, K. Haga, A. Shibayama, Recovery of Nd and Dy from rare earth magnetic waste sludge by hydrometallurgical process, J. Mater. Cycles. Waste. Manag. 15 (2013) 171-178.
[125] G. Chi, M. C. Fuerstenau, J. O. Marsden, Study of Merrill-Crowe processing. Part I: solubility of zinc in alkaline cyanide solution, Int. J. Miner. Process. 49 (1997) 171-183.
[126] F. T. Awadalla, G. M. Ritcey, Recovery of gold from thiourea, thiocyanate, or thiosulfate solutions by reduction-precipitation with a stabilized form of sodium borohydride, Sep. Sci. Technol. 26 (1991) 1207-1228.
[127] Y.-F. Huang, S.-L. Chou, S.-L. Lo, Gold recovery from waste printed circuit boards of mobile phones by using microwave pyrolysis and hydrometallurgical methods, Sustain. Environ. Res. 32 (2022) 6.
[128] H. Mahandra, F. Faraji, A. Azizitorghabeh, A. Ghahreman, Selective extraction and recovery of gold from complex thiosulfate pregnant leach liquor using cyphos IL 101, Ind. Eng. Chem. Res. 61 (2022) 5612-5619.
[129] M. Wang, Q. Wang, J. Wang, R. Liu, G. Zhang, Y. Yang, Homogenous liquid-liquid extraction of Au(III) from acidic medium by ionic liquid thermomorphic systems, ACS Sustain. Chem. Eng. 9 (2021) 4894-4902.
[130] F. J. Alguacil, C. Caravaca, A. Cobo, S. Martinez, The extraction of gold(I) from cyanide solutions by the phosphine oxide Cyanex 921, Hydrometallurgy. 35 (1994) 41-52.
[131] F. Yang, F. Kubota, Y. Baba, N. Kamiya, M. Goto, Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system, J. Hazard. Mater. 254-255 (2013) 79-88.
[132] M. Gergoric, C. Ekberg, B.-M. Steenari, T. Retegan, Separation of heavy rare-earth elements from light rare-earth elements via solvent extraction from a neodymium magnet leachate and the effects of diluents, J. Sustain. Metall. 3 (2017) 601-610.
[133] X. Sun, J. R. Bell, H. Luo, S. Dai, Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases, Dalton Trans. 40 (2011) 8019.
[134] J. Park, Y. Jung, P. Kusumah, J. Lee, K. Kwon, C. Lee, Application of Ionic Liquids in Hydrometallurgy, Int. J. Mol. Sci. 15 (2014) 15320-15343.
[135] B. Volesky, Biosorption and me, Water Res. 41 (2007) 4017-4029.
[136] T. G. Chapman, F.W. McQuiston, U.S. Patent 2545239 (C01G 5/00), (1951)
[137] L. M. T. Rosa, W. G. Botero, J. Braga do Carmo, G. V. M. Gabriel, W. R. Waldman, A. D.M. Cavagis, D. Goveia, L. Camargo de Oliveira, Application of natural organic residues in the remediation of metals from e-waste, Environ. Technol. Innov. 27 (2022) 102452.
[138] X. Zhang, H. Li, M. Ye, H. Zhang, G. Wang, Y. Zhang, Bacterial cellulose hybrid membrane grafted with high ratio of adipic dihydrazide for highly efficient and selective recovery of gold from E-waste, Sep. Purif. Technol. 292 (2022) 121021.
[139] S. C. R. Santos, H. A. M. Bacelo, R. A. R. Boaventura, C. M. S. Botelho, Tannin‐adsorbents for water decontamination and for the recovery of critical metals: current state and future perspectives, Biotechnol. J. 14 (2019) 1900060.
[140] Z. Dong, T. Jiang, B. Xu, Y. Yang, Q. Li, recovery of gold from pregnant thiosulfate solutions by the resin adsorption technique, Metals. 7 (2017) 555.
[141] X. Hérès, V. Blet, P. Di Natale, A. Ouaattou, H. Mazouz, D. Dhiba, F. Cuer, Selective extraction of rare earth elements from phosphoric acid by ion exchange resins, Metals. 8 (2018) 682.
[142] A. Mecucci, K. Scott, Leaching and electrochemical recovery of copper, lead and tin from scrap printed circuit boards, J. Chem. Technol. Biotechnol. 77 (2002) 449-457.
[143] A. Fathima, J. Y. B. Tang, A. Giannis, I. M. S. K. Ilankoon, M. N. Chong, Catalysing electrowinning of copper from E-waste: A critical review, Chemosphere. 298 (2022) 134340.
[144] Y. Chu, M. Chen, S. Chen, B. Wang, K. Fu, H. Chen, Micro-copper powders recovered from waste printed circuit boards by electrolysis, Hydrometallurgy. 156 (2015) 152-157.
[145] E. Rudnik, E. Bayaraa, Electrochemical dissolution of smelted low-grade electronic scraps in acid sulfate-chloride solutions, Hydrometallurgy. 159 (2016) 110-119.
[146] S. Fogarasi, F. Imre-Lucaci, Á. Imre-Lucaci, P. Ilea, Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation, J. Hazard. Mater. 273 (2014) 215-221.
[147] S. Ilyas, M. A. Anwar, S. B. Niazi, M. Afzal Ghauri, Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria, Hydrometallurgy. 88 (2007) 180-188.
[148] L. E. Macaskie, N. J. Creamer, A. M. M. Essa, N. L. Brown, A new approach for the recovery of precious metals from solution and from leachates derived from electronic scrap, Biotechnol. Bioeng. 96 (2007) 631-639.
[149] A. N. Mabbett, D. Sanyahumbi, P. Yong, L. E. Macaskie, Biorecovered Precious Metals from Industrial Wastes: Single-Step Conversion of a Mixed Metal Liquid Waste to a Bioinorganic Catalyst with Environmental Application, Environ Sci Technol. 40 (2006) 1015-1021.
[150] A. Marra, A. Cesaro, E. R. Rene, V. Belgiorno, P. N. L. Lens, Bioleaching of metals from WEEE shredding dust, J. Environ. Manage. 210 (2018) 180-190.
[151] M. Vera, A. Schippers, W. Sand, Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A, Appl. Microbiol. Biotechnol., 97 (2013) 7529-7541.
[152] D. Morin, A. Lips, T. Pinches, J. Huisman, C. Frias, A. Norberg, E. Forssberg, BioMinE – Integrated project for the development of biotechnology for metal-bearing materials in Europe, Hydrometallurgy. 83 (2006) 69-76.
[153] H. L. Ehrlich, Microbes and metals, Appl. Microbiol. Biotechnol, 48 (1997) 687-692.
[154] G. J. Olson, J. A. Brierley, C. L. Brierley, Bioleaching review part B:, Appl. Microbiol. Biotechnol. 63 (2003) 249-257.
[155] H. Brandl, S. Lehmann, M. A. Faramarzi, D. Martinelli, Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms, Hydrometallurgy. 94 (2008) 14-17.
[156] G. Liang, Y. Mo, Q. Zhou, Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles, Enzyme. Microb. Technol. 47 (2010) 322-326.
[157] S. Chen, Y. Yang, C. Liu, F. Dong, B. Liu, Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans, Chemosphere. 141 (2015) 162-168.
[158] A. Islam, T. Ahmed, Md. R. Awual, A. Rahman, M. Sultan, A. Abd Aziz, M. Uddin Monir, S. Hwa Teo, M. Hasan Advances in sustainable approaches to recover metals from e-waste-A review, J. Clean. Prod. 244 (2020) 118815.
[159] M. E. Díaz-Martínez, R. Argumedo-Delira, G. Sánchez-Viveros, A. Alarcón, Ma. R. Mendoza-López, microbial bioleaching of Ag, Au and Cu from printed circuit boards of mobile phones, Curr. Microbiol. 76 (2019) 536-544.
[160] R. Argumedo-Delira, M. J. Gómez-Martínez, B. J. Soto, Gold bioleaching from printed circuit boards of mobile phones by aspergillus niger in a culture without agitation and with glucose as a carbon source, Metals. 9 (2019) 521.
[161] S. Akbari, A. Ahmadi, Recovery of copper from a mixture of printed circuit boards (PCBs) and sulphidic tailings using bioleaching and solvent extraction processes, Chem. Eng. Process. 142 (2019) 107584.
[162] K. Brandl G. Plitas, C. N. Mihu, C. Ubeda, T. Jia, M. Fleisher, B. Schnabl, R. P. DeMatteo, E.G. Pamer., Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits, Nature, 455 (2008) 804-807.
[163] A. Kumar, H. S. Saini, S. Kumar, Bioleaching of gold and silver from waste printed circuit boards by pseudomonas balearica SAE1 isolated from an e-waste recycling facility, Curr Microbiol, 75 (2018) 194-201.
[164] Z. Yuan, Z. Huang, J. Ruan, Y. Li, J. Hu, R. Qiu, Contact behavior between cells and particles in bioleaching of precious metals from waste printed circuit boards, ACS Sustain. Chem. Eng. 6 (2018) 11570-11577.
[165] A. Luyima, H. Shi, L. Zhang, Leaching studies for metals recovery from waste printed wiring boards, JOM, 63 (2011) 38-41.
[166] M. Xia, P. Bao, A. Liu, M.Wang, L. Shen, R. Yu, Y. Liu, M. Chen, J. Li, X. Wu, G. Qiu, W. Zeng, Bioleaching of low-grade waste printed circuit boards by mixed fungal culture and its community structure analysis, Resour. Conserv. Recycl. 136 (2018) 267-275.
[167] S. Wang, L. Chen, X. Zhou, W. Yan, R. Ding, B. Chen, C. Wang, F. Zhao, Enhanced bioleaching efficiency of copper from printed circuit boards without iron loss, Hydrometallurgy. 180 (2018) 65-71.
[168] A. Ortego, A. Valero, R. Magdalena, M. Iglesias-Embil, TREASURE project – D3.2: Report on disassemblability analysis, Zaragoza, 2022.
[169] A. Ortego, A. Valero, A. Valero, M. Iglesias, Toward material efficient vehicles: ecodesign recommendations based on metal sustainability assessments, SAE Int. J. Mater. 11 (2018) 213-228.
[170] VOLVO, “Integrated starter generator,” 2001. Retrieved from: