Microstructural and corrosion study of a “non-comercial” high manganese steel

Microstructural and corrosion study of a “non-comercial” high manganese steel

Marcos Natan da Silva Lima, Mauro Andres Cerra Florez, Jorge Luiz Cardoso, João Vitor da Silva Pinto, Lucas Moura Farias de Medeiros, Walney Silva Araújo, Hamilton Ferreira Gomes de Abreu

download PDF

Abstract. High-Mn steels have great plasticity when subjected to deformation due to TWIP or TRIP effects. This work evaluated the microstructural evolution, the formation of the -Martensite phase taking into account the hot rolling of 80-60% and the solution annealing. Afterwards, microstructures were analyzed by SEM. Volume fraction of the Austenite and -Martensite phases were measured by EBSD technique. The steel obtained low energy levels of stacking fault, favoring the effect TRIP. Corrosion resistance in 0.1M NaCl solution was analyzed by open potential circuit and potentiodynamic polarization techniques. The analysis of the curves and the surface of the steel after the polarization tests showed that the steel with less strain had relatively nobler potential than the steel with more strain.

High Mn Steel, Microstructural Characterization, Nacl Corrosion, Hot Rolling, Ε-Martensite

Published online , 11 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Marcos Natan da Silva Lima, Mauro Andres Cerra Florez, Jorge Luiz Cardoso, João Vitor da Silva Pinto, Lucas Moura Farias de Medeiros, Walney Silva Araújo, Hamilton Ferreira Gomes de Abreu, Microstructural and corrosion study of a “non-comercial” high manganese steel, Materials Research Proceedings, Vol. 32, pp 319-329, 2023

DOI: https://doi.org/10.21741/9781644902615-37

The article was published as article 37 of the book Superplasticity in Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] Marquardt ED, Le JP, Radebaugh R. Cryogenic material properties database, in: Cryocoolers 11, Springer, 2002:681-687. https://doi.org/10.1007/0-306-47112-4_84
[2] Mi Z, Tang D, Jiang H, Dai Y, Li S. Effects of annealing temperature on the microstructure and properties of the 25Mn-3Si-3Al TWIP steel, Int J Miner. Metall Mater. 2009; 16:154-158. https://doi.org/10.1016/S1674-4799(09)60026-1
[3] Dafé SSF, Sicupira FL, Matos FCS, Cruz NS, Moreira DR, Santos DB. Effect of cooling rate on (ε, α’) martensite formation in twinning/transformation-induced plasticity Fe-17Mn-0.06 C steel, Mater Res 2013; 16:1229-1236. https://doi.org/10.1590/S1516-14392013005000129
[4] Talonen J, Hänninen H, Nenonen P, Pape G. Effect of strain rate on the strain-induced γ→ α′-martensite transformation and mechanical properties of austenitic stainless steels, Metall Mater Trans. A. 2005;36: 421-432. https://doi.org/10.1007/s11661-005-0313-y
[5] Hamada AS, Karjalainen LP, Somani MC. The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels, Mater Sci Eng. A. 2007; 467:114-124. https://doi.org/10.1016/j.msea.2007.02.074
[6] Jung JE, Park J, Kim JS, Jeon JB, Kim SK, Chang YW. Temperature effect on twin formation kinetics and deformation behavior of Fe-18Mn-0.6 C TWIP steel, Met Mater Int. 2014;20: 27-34. https://doi.org/10.1007/s12540-014-1008-y
[7] Cina B. A transitional hcp phase in the γ→ α transformation in certain Fe-base alloys, Acta Metall. 1958; 6:748-762. https://doi.org/10.1016/0001-6160(58)90050-6
[8] B. Cina, Effect of cold work on the gamma-alpha transformation in some Fe-Ni-Cr alloys, J Iron Steel Inst. 1954; 177:406.
[9] Cullity BD, Stock SR. Elements of X-ray Diffraction, Prentice hall New Jersey, 2001.
[10] Pardal JM, Tavares SSM, Fonseca MPC, da Silva M.R, Neto JM, Abreu HFG. Influence of temperature and aging time on hardness and magnetic properties of the maraging steel grade 300, J Mater Sci. 2007; 42:2276-2281. https://doi.org/10.1007/s10853-006-1317-8
[11] Gorni A, da Silveira JD. Accelerated cooling of steel plates: the time has come, in: Quenching Cool. Residual Stress Distortion Control, ASTM International, 2010.
[12] Bai Y, Bai Q. Subsea pipelines and risers, Elsevier, 2005.
[13] Zhang YS, Zhu XM, Liu M, Che RX. Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy, Appl Surf. Sci. 2004; 222: 89-101. https://doi.org/10.1016/j.apsusc.2003.08.068
[14] Florez M.A.C., Lima, M. N. D. S., Araújo, W. S., & Silva, M. J. G. D. Characterization and Comparative Analysis of Corrosion Resistance of 4 High Manganese Steels Models in Aqueous Solution of NaCl. Mater Res. 2019, 22. https://doi.org/10.1590/1980-5373-mr-2019-0283
[15] Cerra Florez, M. A., Cardoso, J. L., Ferreira Gomes de Abreu, H., Araújo, W. S., & Gomes da Silva, M. J. Comparative study of corrosion resistance between four non-commercial high manganese steel models and 9% nickel steel in aqueous solution of H2SO4. Int J Mater Res, 2020, 111(8), 661-667. https://doi.org/10.3139/146.111925
[16] H.S. Seo, J.H. Park, J.Y. Park, J.G. Choi, J.K. Kim. Presented at Twenty-Fourth Int. Ocean Polar Eng. Conf., International Society of Offshore and Polar Engineers, 2014.
[17] Hamada AS, Karjalainen LP. Corrosion Behaviour of High-Mn TWIP Steels with Electroless Ni-P Coating, Open Corros. J. 2010;3:1-6. https://doi.org/10.2174/1876503301003010001
[18] Aperador WA, Ruiz JHB, Betancurt JD. Evaluation of erosion-corrosion resistance in Fe-Mn-Al austenitic steels, Mater Res. 2013;16:447-452. https://doi.org/10.1590/S1516-14392012005000179
[19] ASTM, Standard test methods and definitions for mechanical testing of steel products, ASTM A370. 2012.
[20] Dumay A, Chateau JP, Allain S, Migot S, Bouaziz O. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel, Mater Sci Eng A. 2008;483:184-187. https://doi.org/10.1016/j.msea.2006.12.170
[21] Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys, Mater Sci Eng A. 2004; 387:158-162. https://doi.org/10.1016/j.msea.2004.01.059
[22] Callister Jr WD, Rethwisch DG. Fundamentals of materials science and engineering: an integrated approach, John Wiley & Sons, 2012.
[23] Rath BB, Imam MA, Pande CS. Nucleation and growth of twin interfaces in FCC metals and alloys, Mater Phys Mech. 2000;1: 61-66.
[24] A. Standard, E112-13. Standard test methods for determining average grain size, ASTM International, West Conshohocken, (n.d.).2013.
[25] Opiela M, Grajcar A, Krukiewicz W. Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution, J Achiev Mater Manuf Eng.2009;33: 159-165.
[26] Razavi GR, Gholami H, Zirepour GR, Zamani D, Saboktakin M, Monajati H. Study corrosion of high-Mn steels with Mo in 3.5% NaCl solution, Conf Adv Mater Eng. IPCSIT, 2011. https://doi.org/10.4028/scientific5/AMR.457-458.334
[27] Lasek S, Mazancová E. Influence of thermal treatment on structure and corrosion properties of high manganese triplex steels, Metalurgija. 2013;52:441-444.
[28] Grajcar A, Kciuk M, Topolska S, Płachcińska A, Microstructure and corrosion behavior of hot-deformed and cold-strained high-Mn steels, J Mater Eng Perform.2016; 25: 2245-2254. https://doi.org/10.1007/s11665-016-2085-5
[29] Fajardo S, Llorente I, Jiménez JA, Bastidas JM, Bastidas DM. Effect of Mn additions on the corrosion behaviour of TWIP Fe-Mn-Al-Si austenitic steel in chloride solution, Corros Sci. 2019;154: 246-253. https://doi.org/10.1016/j.corsci.2019.04.026